論文の概要: Hybrid Predictive Modeling of Malaria Incidence in the Amhara Region, Ethiopia: Integrating Multi-Output Regression and Time-Series Forecasting
- arxiv url: http://arxiv.org/abs/2510.01302v1
- Date: Wed, 01 Oct 2025 16:16:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 14:32:17.228532
- Title: Hybrid Predictive Modeling of Malaria Incidence in the Amhara Region, Ethiopia: Integrating Multi-Output Regression and Time-Series Forecasting
- Title(参考訳): エチオピア・アムハラ地域のマラリア発生のハイブリッド予測モデル:多出力回帰と時系列予測の統合
- Authors: Kassahun Azezew, Amsalu Tesema, Bitew Mekuria, Ayenew Kassie, Animut Embiale, Ayodeji Olalekan Salau, Tsega Asresa,
- Abstract要約: エチオピアではマラリアが主要な公衆衛生上の問題となっている。
マラリアの発生を正確に予測することは、効果的な資源配分とタイムリーな介入に不可欠である。
本研究では,時系列予測,複数出力回帰,従来の回帰に基づく予測を組み合わせた予測モデルを提案する。
- 参考スコア(独自算出の注目度): 3.1906452780505266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malaria remains a major public health concern in Ethiopia, particularly in the Amhara Region, where seasonal and unpredictable transmission patterns make prevention and control challenging. Accurately forecasting malaria outbreaks is essential for effective resource allocation and timely interventions. This study proposes a hybrid predictive modeling framework that combines time-series forecasting, multi-output regression, and conventional regression-based prediction to forecast the incidence of malaria. Environmental variables, past malaria case data, and demographic information from Amhara Region health centers were used to train and validate the models. The multi-output regression approach enables the simultaneous prediction of multiple outcomes, including Plasmodium species-specific cases, temporal trends, and spatial variations, whereas the hybrid framework captures both seasonal patterns and correlations among predictors. The proposed model exhibits higher prediction accuracy than single-method approaches, exposing hidden patterns and providing valuable information to public health authorities. This study provides a valid and repeatable malaria incidence prediction framework that can support evidence-based decision-making, targeted interventions, and resource optimization in endemic areas.
- Abstract(参考訳): マラリアは、エチオピア、特に季節や予測不可能な感染パターンが予防とコントロールを困難にしているアムハラ地方において、主要な公衆衛生上の関心事である。
マラリアの発生を正確に予測することは、効果的な資源配分とタイムリーな介入に不可欠である。
本研究では, 時系列予測, マルチアウトプット回帰, 従来の回帰予測を組み合わせ, マラリアの発生を予測するハイブリッド予測モデルを提案する。
環境変数,過去のマラリア症例データ,およびアムハラ地域健康センターの人口統計情報を用いてモデルを訓練し検証した。
マルチアウトアウトレグレッション・アプローチは,Plasmodium種別,時間的傾向,空間的変動など,複数の結果の同時予測を可能にする。
提案モデルでは, 単一手法のアプローチよりも高い予測精度を示し, 隠蔽パターンを明らかにし, 公衆衛生当局に貴重な情報を提供する。
本研究は,エビデンスに基づく意思決定,標的とした介入,および内因性領域における資源最適化を支援するための,有効かつ反復可能なマラリア発生予測フレームワークを提供する。
関連論文リスト
- Predictive Causal Inference via Spatio-Temporal Modeling and Penalized Empirical Likelihood [0.0]
本研究では,従来の単一モデルアプローチの制約を克服する目的で設計された,予測因果推論のための統合フレームワークを提案する。
具体的には、空間的健康状態推定のための隠れマルコフモデルと、時間的結果の軌跡を捉えるためのマルチタスクとマルチグラフ畳み込みネットワーク(MTGCN)を組み合わせる。
有用性を示すために,がん,認知症,パーキンソン病などの臨床領域に焦点を当て,治療効果を直接観察することが困難である。
論文 参考訳(メタデータ) (2025-07-11T03:11:15Z) - A Multilateral Attention-enhanced Deep Neural Network for Disease Outbreak Forecasting: A Case Study on COVID-19 [0.6874745415692134]
本稿では,感染症予測の課題に対処する新しいアプローチを提案する。
本稿では,複数の情報源からの情報を活用するマルチラテラルアテンション強化型GRUモデルを提案する。
GRUフレームワークに注意機構を組み込むことで、我々のモデルはデータ内の複雑な関係や時間的依存を効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-08-26T06:31:53Z) - Predictive Churn with the Set of Good Models [61.00058053669447]
本稿では,予測的不整合という2つの無関係な概念の関連性について考察する。
予測多重性(英: predictive multiplicity)は、個々のサンプルに対して矛盾する予測を生成するモデルである。
2つ目の概念である予測チャーン(英: predictive churn)は、モデル更新前後の個々の予測の違いを調べるものである。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
Model of COVID-19 Hospital Trajectories [55.786207368853084]
新型コロナウイルス(COVID-19)のパンデミックの中、病院の資源をモデル化する問題に取り組んでいます。
幅広い適用性のために、関心のある領域の患者レベルデータが利用できない、一般的なが困難なシナリオに注目します。
本稿では,ACED-HMM(ACED-HMM)と呼ばれる集合数正規化隠れマルコフモデルを提案する。
論文 参考訳(メタデータ) (2021-04-28T15:32:42Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - Ensemble Forecasting of the Zika Space-TimeSpread with Topological Data
Analysis [13.838100337224075]
ジカウイルスは、主にAedes aegyptiとAedes albopictusの蚊に噛まれて伝染する。
その結果、ジカウイルス感染の頻度は、降水量、高温、人口密度の高い地域では一般的である。
累積ベティ数の概念を導入し,その累積ベティ数をトポロジカル記述子として3つの機械学習モデルに統合する。
論文 参考訳(メタデータ) (2020-09-24T16:42:19Z) - Simulation of Covid-19 epidemic evolution: are compartmental models
really predictive? [0.0]
本稿では,無症候性および死亡個体群に富んだSIR疫学モデルが,流行の進展を確実に予測できるかどうかを論じる。
粒子群最適化(PSO)に基づく機械学習手法を提案する。
予測における散乱の分析は、モデル予測がトレーニングに使用されるデータセットのサイズに非常に敏感であり、さらにデータが必要であることを示している。
論文 参考訳(メタデータ) (2020-04-14T08:42:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。