論文の概要: RAG-BioQA Retrieval-Augmented Generation for Long-Form Biomedical Question Answering
- arxiv url: http://arxiv.org/abs/2510.01612v1
- Date: Thu, 02 Oct 2025 02:49:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.958055
- Title: RAG-BioQA Retrieval-Augmented Generation for Long-Form Biomedical Question Answering
- Title(参考訳): RAG-BioQA検索による長期バイオメディカル質問応答生成
- Authors: Lovely Yeswanth Panchumarthi, Sai Prasad Gudari, Atharva Negi, Praveen Raj Budime, Harsit Upadhya,
- Abstract要約: 本稿では,検索拡張世代とドメイン固有の微調整を組み合わせた新しいフレームワークであるRAG-BioQAについて述べる。
PubMedQAデータセットの実験結果は、ベースラインよりも大幅に改善されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exponential growth of biomedical literature creates significant challenges for accessing precise medical information. Current biomedical question-answering systems primarily focus on short-form answers, failing to provide the comprehensive explanations necessary for clinical decision-making. We present RAG-BioQA, a novel framework combining retrieval-augmented generation with domain-specific fine-tuning to produce evidence-based, long-form biomedical answers. Our approach integrates BioBERT embeddings with FAISS indexing and compares various re-ranking strategies (BM25, ColBERT, MonoT5) to optimize context selection before synthesizing evidence through a fine-tuned T5 model. Experimental results on the PubMedQA dataset show significant improvements over baselines, with our best model achieving substantial gains across BLEU, ROUGE, and METEOR metrics, advancing the state of accessible, evidence-based biomedical knowledge retrieval.
- Abstract(参考訳): 医学文献の指数的成長は、正確な医療情報にアクセスする上で重要な課題を生み出している。
現在のバイオメディカルな質問答えシステムは、主に短期的な回答に焦点を当てており、臨床的な意思決定に必要な包括的な説明を提供していない。
本稿では,検索強化世代とドメイン固有微調整を組み合わせた新しいフレームワークであるRAG-BioQAについて述べる。
提案手法は,BioBERT埋め込みとFAISSインデクシングを統合し,T5モデルを用いて証拠を合成する前にコンテキスト選択を最適化するための様々な再分類戦略(BM25, ColBERT, MonoT5)を比較する。
PubMedQAデータセットの実験結果から,BLEU,ROUGE,METEORの指標において,ベースラインよりも大幅に向上した。
関連論文リスト
- Biomedical Literature Q&A System Using Retrieval-Augmented Generation (RAG) [0.0]
本報告では, バイオメディカル文献質問応答システム(Q&A)について述べる。
このシステムは、PubMedの記事、キュレートされたQ&Aデータセット、医療百科事典など、さまざまなソースを統合している。
このシステムは一般の医療クエリとドメイン固有のタスクの両方をサポートし、乳がんの文献に焦点を絞った評価を行う。
論文 参考訳(メタデータ) (2025-09-05T21:29:52Z) - CaresAI at BioCreative IX Track 1 -- LLM for Biomedical QA [3.222047196930981]
大規模言語モデル(LLM)は、様々な領域にわたる正確な質問応答において、ますます明白になっている。
本稿では,BioCreative IX共有タスクのMedHopQAトラックへのアプローチについて述べる。
短い解答と長い解答を組み合わせた微調整、短い解答のみ、長い解答のみの3つの実験的な設定が検討されている。
論文 参考訳(メタデータ) (2025-08-31T11:40:02Z) - MedBioLM: Optimizing Medical and Biological QA with Fine-Tuned Large Language Models and Retrieval-Augmented Generation [0.0]
本稿では,ドメイン適応型バイオメディカル質問応答モデルであるMedBioLMを紹介する。
MedBioLMは、微調整および検索拡張生成(RAG)を統合することで、ドメイン固有の知識を動的に組み込む。
微調整はベンチマークデータセットの精度を大幅に向上する一方、RAGは事実整合性を高める。
論文 参考訳(メタデータ) (2025-02-05T08:58:35Z) - NeuroSym-BioCAT: Leveraging Neuro-Symbolic Methods for Biomedical Scholarly Document Categorization and Question Answering [0.14999444543328289]
本稿では,最適化されたトピックモデリングフレームワークであるOVB-LDAとBI-POP CMA-ES最適化技術を統合し,学術文書の抽象分類を強化した新しい手法を提案する。
我々は、ドメイン固有データに基づいて微調整された蒸留MiniLMモデルを用いて、高精度な回答抽出を行う。
論文 参考訳(メタデータ) (2024-10-29T14:45:12Z) - BMRetriever: Tuning Large Language Models as Better Biomedical Text Retrievers [48.21255861863282]
BMRetrieverは、バイオメディカル検索を強化するための一連の密集したレトリバーである。
BMRetrieverは強力なパラメータ効率を示し、410Mの派生型はベースラインを最大11.7倍まで上回っている。
論文 参考訳(メタデータ) (2024-04-29T05:40:08Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
汎用AIは、さまざまなデータ型を解釈する汎用性のために、制限に対処する可能性を秘めている。
本稿では,最初のオープンソースかつ軽量な視覚言語基盤モデルであるBiomedGPTを提案する。
論文 参考訳(メタデータ) (2023-05-26T17:14:43Z) - BiomedCLIP: a multimodal biomedical foundation model pretrained from fifteen million scientific image-text pairs [46.87322157229728]
PMC-15Mは,既存のバイオメディカル・マルチモーダル・データセットよりも2桁大きい新しいデータセットである。
PMC-15Mは440万の科学論文から収集された1500万のバイオメディカル画像テキスト対を含んでいる。
PMC-15Mに基づいて,生物医学的視覚言語処理に適したドメイン固有適応を備えた多モーダル基礎モデルであるBiomedCLIPを事前訓練した。
論文 参考訳(メタデータ) (2023-03-02T02:20:04Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
本稿では,バイオメディカルテキストと非構造化医療報告から関係を抽出するハイブリッドニューラルネットワークであるバイオメディカル情報抽出を提案する。
本研究は,2つの主要な生医学的関係抽出タスク,化学物質とタンパク質の相互作用,およびクロスホスピタル・パン・カンノロジー報告コーパスについて検討した。
論文 参考訳(メタデータ) (2021-10-26T13:19:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。