論文の概要: Foundation Visual Encoders Are Secretly Few-Shot Anomaly Detectors
- arxiv url: http://arxiv.org/abs/2510.01934v1
- Date: Thu, 02 Oct 2025 11:53:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:21.119289
- Title: Foundation Visual Encoders Are Secretly Few-Shot Anomaly Detectors
- Title(参考訳): ファウンデーション・ビジュアル・エンコーダは、異常検出器がほとんどない
- Authors: Guangyao Zhai, Yue Zhou, Xinyan Deng, Lars Heckler, Nassir Navab, Benjamin Busam,
- Abstract要約: FoundADと呼ばれる数発の異常検出装置を開発した。
画像中の異常量は学習した埋め込みの差と直接相関する。
簡単な演算子は、画像中の分布外領域を特徴付け識別する異常検出の有効なツールとして機能する。
- 参考スコア(独自算出の注目度): 58.75916798814376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-shot anomaly detection streamlines and simplifies industrial safety inspection. However, limited samples make accurate differentiation between normal and abnormal features challenging, and even more so under category-agnostic conditions. Large-scale pre-training of foundation visual encoders has advanced many fields, as the enormous quantity of data helps to learn the general distribution of normal images. We observe that the anomaly amount in an image directly correlates with the difference in the learnt embeddings and utilize this to design a few-shot anomaly detector termed FoundAD. This is done by learning a nonlinear projection operator onto the natural image manifold. The simple operator acts as an effective tool for anomaly detection to characterize and identify out-of-distribution regions in an image. Extensive experiments show that our approach supports multi-class detection and achieves competitive performance while using substantially fewer parameters than prior methods. Backed up by evaluations with multiple foundation encoders, including fresh DINOv3, we believe this idea broadens the perspective on foundation features and advances the field of few-shot anomaly detection.
- Abstract(参考訳): 工業用安全検査の合理化と簡易化を図る。
しかし、限られたサンプルは、正常な特徴と異常な特徴の正確な区別を困難にし、さらにカテゴリーに依存しない条件下では困難である。
基礎となるビジュアルエンコーダの大規模事前学習は、大量のデータが通常の画像の一般的な分布を学習するのに役立っているため、多くの分野が進歩している。
画像中の異常量は学習者の埋め込みの違いと直接相関し,FoundADと呼ばれる数発の異常検出器の設計に利用している。
これは、自然な像多様体への非線形射影作用素の学習によって行われる。
簡単な演算子は、画像中の分布外領域を特徴付け識別する異常検出の有効なツールとして機能する。
大規模な実験により,本手法はマルチクラス検出をサポートし,従来の手法に比べてパラメータが大幅に少ない上で,競争性能が向上することが示された。
新たなDINOv3を含む複数のファンデーションエンコーダによる評価により、このアイデアは基礎的特徴に対する視点を広げ、数発の異常検出の分野を前進させると信じている。
関連論文リスト
- Crane: Context-Guided Prompt Learning and Attention Refinement for Zero-Shot Anomaly Detection [50.343419243749054]
異常検出は、医学診断や工業的欠陥検出などの分野において重要である。
CLIPの粗粒化画像テキストアライメントは、微粒化異常に対する局所化と検出性能を制限する。
クレーンは最先端のZSADを2%から28%に改善し、画像レベルとピクセルレベルの両方で、推論速度では競争力を維持している。
論文 参考訳(メタデータ) (2025-04-15T10:42:25Z) - ATAC-Net: Zoomed view works better for Anomaly Detection [1.024113475677323]
ATAC-Netは、既知の最小限の事前異常から異常を検出する訓練を行うフレームワークである。
我々は、その優位性を、同等の設定で現在の最先端技術と比較する。
論文 参考訳(メタデータ) (2024-06-20T15:18:32Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - AnoViT: Unsupervised Anomaly Detection and Localization with Vision
Transformer-based Encoder-Decoder [3.31490164885582]
我々は,画像パッチ間のグローバルな関係を学習することにより,通常の情報を反映する視覚変換器を用いたエンコーダデコーダモデルAnoViTを提案する。
提案モデルは,3つのベンチマークデータセット上での畳み込みモデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-03-21T09:01:37Z) - Focus Your Distribution: Coarse-to-Fine Non-Contrastive Learning for
Anomaly Detection and Localization [19.23452967227186]
本稿では,教師なし異常検出と位置推定のための新しいフレームワークを提案する。
本手法は, 粗いアライメントプロセスを用いて, 正規画像から高密度かつコンパクトな分布を学習することを目的としている。
本フレームワークは, 種々の実世界の欠陥の検出に有効であり, 産業用無監督異常検出における新たな最先端技術を実現する。
論文 参考訳(メタデータ) (2021-10-09T10:44:58Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Constrained Contrastive Distribution Learning for Unsupervised Anomaly
Detection and Localisation in Medical Images [23.79184121052212]
UAD(Unsupervised Anomaly Detection)は、通常の(すなわち健康的な)画像でのみ1クラスの分類器を学習する。
異常検出のための制約コントラスト分布学習(Constrained Contrastive Distribution Learning for Anomaly Detection, CCD)を提案する。
本手法は,3種類の大腸内視鏡および底部検診データセットにおいて,最先端のUADアプローチよりも優れている。
論文 参考訳(メタデータ) (2021-03-05T01:56:58Z) - OIAD: One-for-all Image Anomaly Detection with Disentanglement Learning [23.48763375455514]
クリーンサンプルのみを用いたアンタングル学習に基づく一対一画像異常検出システムを提案する。
3つのデータセットを用いて実験したところ、OIADは90%以上の異常を検出できる一方で、誤報率も低く抑えられることがわかった。
論文 参考訳(メタデータ) (2020-01-18T09:57:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。