論文の概要: Onto-Epistemological Analysis of AI Explanations
- arxiv url: http://arxiv.org/abs/2510.02996v1
- Date: Fri, 03 Oct 2025 13:36:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-06 16:35:52.400559
- Title: Onto-Epistemological Analysis of AI Explanations
- Title(参考訳): AI説明のオント・エポジトロジー解析
- Authors: Martina Mattioli, Eike Petersen, Aasa Feragen, Marcello Pelillo, Siavash A. Bigdeli,
- Abstract要約: 本稿では、モデル決定プロセスの説明を提供する説明可能なAI(XAI)手法について論じる。
我々は,XAI手法の技術的変化が,説明に関する前提条件の重要な相違にどのように対応するかを示す。
また、特定のアプリケーションに対してXAIメソッドを選択する際に、基礎となるオン・エコロジーパラダイムを無視するリスクも強調する。
- 参考スコア(独自算出の注目度): 8.570570532582446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) is being applied in almost every field. At the same time, the currently dominant deep learning methods are fundamentally black-box systems that lack explanations for their inferences, significantly limiting their trustworthiness and adoption. Explainable AI (XAI) methods aim to overcome this challenge by providing explanations of the models' decision process. Such methods are often proposed and developed by engineers and scientists with a predominantly technical background and incorporate their assumptions about the existence, validity, and explanatory utility of different conceivable explanatory mechanisms. However, the basic concept of an explanation -- what it is, whether we can know it, whether it is absolute or relative -- is far from trivial and has been the subject of deep philosophical debate for millennia. As we point out here, the assumptions incorporated into different XAI methods are not harmless and have important consequences for the validity and interpretation of AI explanations in different domains. We investigate ontological and epistemological assumptions in explainability methods when they are applied to AI systems, meaning the assumptions we make about the existence of explanations and our ability to gain knowledge about those explanations. Our analysis shows how seemingly small technical changes to an XAI method may correspond to important differences in the underlying assumptions about explanations. We furthermore highlight the risks of ignoring the underlying onto-epistemological paradigm when choosing an XAI method for a given application, and we discuss how to select and adapt appropriate XAI methods for different domains of application.
- Abstract(参考訳): 人工知能(AI)は、ほぼすべての分野に適用されている。
同時に、現在支配的なディープラーニング手法は、基本的にブラックボックスシステムであり、推論の説明が欠けているため、信頼性と採用が著しく制限されている。
説明可能なAI(XAI)手法は、モデルの意思決定プロセスの説明を提供することで、この課題を克服することを目指している。
このような手法は、主に技術的背景を持つ技術者や科学者によって提案され、様々な説明メカニズムの存在、妥当性、説明的有用性に関する仮定を取り入れて開発されることが多い。
しかし、説明の基本的な概念、すなわち、それが絶対的であるか相対的であるかがわからないかは、決して自明ではなく、何千年もの間、深い哲学的議論の対象となっている。
ここで指摘するように、異なるXAI手法に組み込まれた仮定は無害ではなく、異なるドメインにおけるAI説明の妥当性と解釈に重要な結果をもたらす。
我々は、AIシステムに適用された場合の説明可能性手法におけるオントロジー的・認識論的仮定について検討し、説明の存在に関する仮定と、それらの説明に関する知識を得る能力について述べる。
本分析は,XAI法における技術的変化が,説明に関する前提条件の重要な相違にどのように対応するかを示す。
さらに、アプリケーションに対してXAIメソッドを選択する際に、基礎となるオン・エコロジーパラダイムを無視するリスクを強調し、異なるドメインのアプリケーションに対して適切なXAIメソッドを選択し、適応する方法について議論する。
関連論文リスト
- Explainable artificial intelligence (XAI): from inherent explainability to large language models [0.0]
説明可能なAI(XAI)技術は、機械学習モデルの説明可能性や解釈可能性を促進する。
本稿では、本質的に解釈可能なモデルから現代的なアプローチまで、説明可能なAI手法の進歩について詳述する。
我々は、視覚言語モデル(VLM)フレームワークを利用して、他の機械学習モデルの説明可能性を自動化または改善する説明可能なAI技術についてレビューする。
論文 参考訳(メタデータ) (2025-01-17T06:16:57Z) - A Mechanistic Explanatory Strategy for XAI [0.0]
本稿では,ディープラーニングシステムの機能的構造を説明するためのメカニズム的戦略を概説する。
この結果は,機械的説明の追求が,従来の説明可能性技術が見落としている要素を明らかにすることを示唆している。
論文 参考訳(メタデータ) (2024-11-02T18:30:32Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出における主要なモデリングパラダイムとなっている。
我々は、この分野における重要なトレンドを特定するための体系的なレビューを行い、新しい説明可能なAIアプローチに光を当てた。
また,課題と将来的な研究方向性について,より詳細な展望を述べる。
論文 参考訳(メタデータ) (2024-02-21T13:19:58Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Alterfactual Explanations -- The Relevance of Irrelevance for Explaining
AI Systems [0.9542023122304099]
我々は、決定を完全に理解するためには、関連する特徴に関する知識だけでなく、無関係な情報の認識もAIシステムのユーザーのメンタルモデルの作成に大きく貢献すると主張している。
私たちのアプローチは、Alterfactual Explanations(Alterfactual Explanations)と呼ばれ、AIの入力の無関係な特徴が変更された別の現実を示すことに基づいています。
我々は,AIの推論のさまざまな側面を,反事実的説明法よりも理解するために,人工的説明が適していることを示す。
論文 参考訳(メタデータ) (2022-07-19T16:20:37Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Argumentative XAI: A Survey [15.294433619347082]
計算論の分野からの手法を用いて構築したXAI手法の概要を概説する。
私たちは、さまざまなタイプの説明(本質的およびポストホック的)、議論に基づく説明がデプロイされるさまざまなモデル、デリバリの異なる形式、それらが使用する議論フレームワークに焦点を当てます。
論文 参考訳(メタデータ) (2021-05-24T13:32:59Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。