論文の概要: Alterfactual Explanations -- The Relevance of Irrelevance for Explaining
AI Systems
- arxiv url: http://arxiv.org/abs/2207.09374v1
- Date: Tue, 19 Jul 2022 16:20:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 13:45:45.577286
- Title: Alterfactual Explanations -- The Relevance of Irrelevance for Explaining
AI Systems
- Title(参考訳): alterfactual Explanations -- 説明AIシステムにおける非関連性
- Authors: Silvan Mertes, Christina Karle, Tobias Huber, Katharina Weitz, Ruben
Schlagowski, Elisabeth Andr\'e
- Abstract要約: 我々は、決定を完全に理解するためには、関連する特徴に関する知識だけでなく、無関係な情報の認識もAIシステムのユーザーのメンタルモデルの作成に大きく貢献すると主張している。
私たちのアプローチは、Alterfactual Explanations(Alterfactual Explanations)と呼ばれ、AIの入力の無関係な特徴が変更された別の現実を示すことに基づいています。
我々は,AIの推論のさまざまな側面を,反事実的説明法よりも理解するために,人工的説明が適していることを示す。
- 参考スコア(独自算出の注目度): 0.9542023122304099
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Explanation mechanisms from the field of Counterfactual Thinking are a
widely-used paradigm for Explainable Artificial Intelligence (XAI), as they
follow a natural way of reasoning that humans are familiar with. However, all
common approaches from this field are based on communicating information about
features or characteristics that are especially important for an AI's decision.
We argue that in order to fully understand a decision, not only knowledge about
relevant features is needed, but that the awareness of irrelevant information
also highly contributes to the creation of a user's mental model of an AI
system. Therefore, we introduce a new way of explaining AI systems. Our
approach, which we call Alterfactual Explanations, is based on showing an
alternative reality where irrelevant features of an AI's input are altered. By
doing so, the user directly sees which characteristics of the input data can
change arbitrarily without influencing the AI's decision. We evaluate our
approach in an extensive user study, revealing that it is able to significantly
contribute to the participants' understanding of an AI. We show that
alterfactual explanations are suited to convey an understanding of different
aspects of the AI's reasoning than established counterfactual explanation
methods.
- Abstract(参考訳): 反現実的思考の分野からの説明メカニズムは、人間が慣れ親しんだ自然な推論方法に従うため、説明可能な人工知能(XAI)の広く使われているパラダイムである。
しかし、この分野の一般的なアプローチは、AIの決定において特に重要である特徴や特徴に関する情報を伝えることに基づいている。
我々は、決定を完全に理解するためには、関連する特徴に関する知識だけでなく、無関係な情報の認識もAIシステムのユーザーのメンタルモデルの作成に大きく貢献すると主張している。
そこで我々は,AIシステムを説明する新しい方法を提案する。
私たちのアプローチは、Alterfactual Explanations(Alterfactual Explanations)と呼ばれ、AIの入力の無関係な特徴が変更された代替現実を示すものです。
これにより、ユーザはAIの決定に影響を与えることなく、入力データのどの特性が任意に変化するかを直接知ることができる。
我々は、我々のアプローチを広範なユーザー調査で評価し、AIに対する参加者の理解に大きく貢献できることを明らかにした。
我々は,AIの推論のさまざまな側面を,反事実的説明法よりも理解するために,人工的説明が適していることを示す。
関連論文リスト
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Relevant Irrelevance: Generating Alterfactual Explanations for Image Classifiers [11.200613814162185]
本稿では,ブラックボックス画像分類器の再現的説明の実現可能性を示す。
ニューラルネットワークに基づくブラックボックスモデルにこのアイデアを適用することが可能であることを初めて示します。
論文 参考訳(メタデータ) (2024-05-08T11:03:22Z) - Towards Reconciling Usability and Usefulness of Explainable AI
Methodologies [2.715884199292287]
ブラックボックスAIシステムは、誤った判断を下すと、責任と説明責任の問題を引き起こす可能性がある。
説明可能なAI(XAI)は、開発者とエンドユーザの間の知識ギャップを埋めようとしている。
論文 参考訳(メタデータ) (2023-01-13T01:08:49Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Diagnosing AI Explanation Methods with Folk Concepts of Behavior [70.10183435379162]
我々は「成功」は、その説明がどんな情報を含むかだけでなく、人間の説明者がどのような情報から理解するかにも依存すると考えている。
我々は、人間の説明による社会的帰属の枠組みとして、行動の民意的概念を用いる。
論文 参考訳(メタデータ) (2022-01-27T00:19:41Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Knowledge-intensive Language Understanding for Explainable AI [9.541228711585886]
AIが主導する意思決定の仕方と、どの決定要因が含まれているかを理解することが不可欠である。
意思決定に直接関係する人間中心の説明を持つことは重要である。
人間が理解し、使用する明示的なドメイン知識を巻き込む必要がある。
論文 参考訳(メタデータ) (2021-08-02T21:12:30Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - Does Explainable Artificial Intelligence Improve Human Decision-Making? [17.18994675838646]
我々は、AI(制御)を使わずに客観的な人間の意思決定精度を、AI予測(説明なし)とAI予測(説明なし)とを比較して評価する。
あらゆる種類のAI予測は、ユーザの判断精度を改善する傾向がありますが、説明可能なAIが有意義な影響を与えるという決定的な証拠はありません。
我々の結果は、少なくともいくつかの状況において、説明可能なAIが提供する「なぜ」情報は、ユーザの意思決定を促進することができないことを示唆している。
論文 参考訳(メタデータ) (2020-06-19T15:46:13Z) - Who is this Explanation for? Human Intelligence and Knowledge Graphs for
eXplainable AI [0.0]
我々は、eXplainable AIにヒューマンインテリジェンスがもたらす貢献に焦点を当てる。
我々は、知識表現と推論、社会科学、人間計算、人間-機械協調研究とのより優れた相互作用を求めている。
論文 参考訳(メタデータ) (2020-05-27T10:47:15Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。