論文の概要: Bias and Coverage Properties of the WENDy-IRLS Algorithm
- arxiv url: http://arxiv.org/abs/2510.03365v1
- Date: Fri, 03 Oct 2025 04:12:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:58.934889
- Title: Bias and Coverage Properties of the WENDy-IRLS Algorithm
- Title(参考訳): WENDY-IRLSアルゴリズムのバイアスと被覆特性
- Authors: Abhi Chawla, David M. Bortz, Vanja Dukic,
- Abstract要約: Weak form Estimation of Dynamics (WENDy) 法は、顕著な雑音の頑健性と計算効率を示す。
本研究では,WENDy-IRLSアルゴリズムのパラメータと状態推定器のカバレッジとバイアス特性について,以下の微分方程式の文脈で検討する。
推定器の性能は、4つの異なるノイズ分布と幅広いノイズの下でシミュレーションデータ例で研究され、このアルゴリズムで以前にテストされたものよりもはるかに高いレベルに達した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Weak form Estimation of Nonlinear Dynamics (WENDy) method is a recently proposed class of parameter estimation algorithms that exhibits notable noise robustness and computational efficiency. This work examines the coverage and bias properties of the original WENDy-IRLS algorithm's parameter and state estimators in the context of the following differential equations: Logistic, Lotka-Volterra, FitzHugh-Nagumo, Hindmarsh-Rose, and a Protein Transduction Benchmark. The estimators' performance was studied in simulated data examples, under four different noise distributions (normal, log-normal, additive censored normal, and additive truncated normal), and a wide range of noise, reaching levels much higher than previously tested for this algorithm.
- Abstract(参考訳): 非線形ダイナミクスの弱形式推定法 (WENDy) は近年提案されたパラメータ推定アルゴリズムのクラスであり、顕著な雑音の頑健さと計算効率を示す。
本研究は、ロジスティック、ロトカ・ボルテラ、フィッツヒュー・ナグモ、ヒンドマーシュ・ローズ、タンパク質翻訳ベンチマークといった微分方程式の文脈において、元のWENDy-IRLSアルゴリズムのパラメータと状態推定器のカバレッジとバイアス特性について検討する。
推定器の性能は, 4つの異なる雑音分布(正規, 対数正規, 加法正規, 加法正規, 加法トランケート正規)と, 広い範囲の雑音の下でシミュレーションデータを用いて検討した。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Information limits and Thouless-Anderson-Palmer equations for spiked matrix models with structured noise [19.496063739638924]
構造スパイクモデルに対するベイズ推定の飽和問題を考える。
適応的なThouless-Anderson-Palmer方程式の理論にインスパイアされた効率的なアルゴリズムを用いて、統計的限界を予測する方法を示す。
論文 参考訳(メタデータ) (2024-05-31T16:38:35Z) - Noise Stability Optimization for Finding Flat Minima: A Hessian-based Regularization Approach [18.009376840944284]
本稿では,ヘッセン損失行列を効果的に正規化できるアルゴリズムを提案する。
提案手法は,CLIPとチェーン・オブ・ファインチューニングデータセットの事前学習における一般化の改善に有効である。
論文 参考訳(メタデータ) (2023-06-14T14:58:36Z) - Stochastic Natural Thresholding Algorithms [18.131412357510158]
計算効率を向上したNatural Thresholding (NT) が提案されている。
本稿では,線形測度を用いて決定性版を拡張することにより,自然しきい値決定アルゴリズムの収束保証を提案する。
論文 参考訳(メタデータ) (2023-06-07T18:49:19Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Fully Adaptive Bayesian Algorithm for Data Analysis, FABADA [0.0]
本稿では,ベイズ推定の観点から,新しい非パラメトリック雑音低減手法について述べる。
データのスムーズなバージョン、スムーズなモデルを繰り返し評価し、基礎となる信号の推定値を得る。
繰り返しは、最後の滑らかなモデルの証拠と$chi2$統計に基づいて停止し、信号の期待値を計算する。
論文 参考訳(メタデータ) (2022-01-13T18:54:31Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。