論文の概要: The analogy theorem in Hoare logic
- arxiv url: http://arxiv.org/abs/2510.03685v1
- Date: Sat, 04 Oct 2025 05:59:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.194563
- Title: The analogy theorem in Hoare logic
- Title(参考訳): ホア論理における類推定理
- Authors: Nikitin Nikita,
- Abstract要約: データドメイン間のモデルの転送は、一般的に厳密な数学的正当化を欠いている。
本稿では,一階述語論理とホア論理を用いて,データセットとモデル間の類似概念を定式化する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The introduction of machine learning methods has led to significant advances in automation, optimization, and discoveries in various fields of science and technology. However, their widespread application faces a fundamental limitation: the transfer of models between data domains generally lacks a rigorous mathematical justification. The key problem is the lack of formal criteria to guarantee that a model trained on one type of data will retain its properties on another.This paper proposes a solution to this problem by formalizing the concept of analogy between data sets and models using first-order logic and Hoare logic.We formulate and rigorously prove a theorem that sets out the necessary and sufficient conditions for analogy in the task of knowledge transfer between machine learning models. Practical verification of the analogy theorem on model data obtained using the Monte Carlo method, as well as on MNIST and USPS data, allows us to achieving F1 scores of 0.84 and 0.88 for convolutional neural networks and random forests, respectively.The proposed approach not only allows us to justify the correctness of transfer between domains but also provides tools for comparing the applicability of models to different types of data.The main contribution of the work is a rigorous formalization of analogy at the level of program logic, providing verifiable guarantees of the correctness of knowledge transfer, which opens new opportunities for both theoretical research and the practical use of machine learning models in previously inaccessible areas.
- Abstract(参考訳): 機械学習手法の導入は、科学と技術の様々な分野における自動化、最適化、発見において大きな進歩をもたらした。
データドメイン間のモデル転送は、一般的に厳密な数学的正当化を欠いている。
本論文は,機械学習モデル間の知識伝達のタスクにおいて,類似性に必要な条件を定式化し,厳密に証明する定理を定式化して,一階述語論理とホア論理を用いてデータセットとモデル間の類似性の概念を定式化する手法を提案する。
モンテカルロ法とMNIST法とUSPS法を用いて得られたモデルデータに対するアナロジー定理の実践的検証により、畳み込みニューラルネットワークとランダムフォレストのF1スコア0.84と0.88をそれぞれ達成することが可能となり、提案手法はドメイン間の転送の正当性を正当化するだけでなく、異なるタイプのデータに対するモデルの適用性を比較するためのツールも提供する。
関連論文リスト
- Neural Network Reprogrammability: A Unified Theme on Model Reprogramming, Prompt Tuning, and Prompt Instruction [55.914891182214475]
モデル適応のための統一フレームワークとして,ニューラルネットワークの再プログラム可能性を導入する。
本稿では,4つの重要な側面にまたがる情報操作アプローチを分類する分類法を提案する。
残る技術的課題や倫理的考察も分析する。
論文 参考訳(メタデータ) (2025-06-05T05:42:27Z) - Information Science Principles of Machine Learning: A Causal Chain Meta-Framework Based on Formalized Information Mapping [7.299890614172539]
本研究は、機械学習における重要な課題、すなわち、統一的な形式的理論的枠組みの欠如と、モデル解釈可能性と倫理的安全性に関する基礎理論の欠如に対処する。
まず、一般的な機械学習段階における存在論的状態とキャリアマッピングを明確に定義し、形式的な情報モデルを構築する。
学習可能な述語と処理可能な述語を導入し、学習と処理機能を導入することにより、機械学習プロセスを管理する因果連鎖論理と制約法を解析する。
論文 参考訳(メタデータ) (2025-05-19T14:39:41Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
本稿では,Transferable Prototype Learning (TCPL) という,本質的に解釈可能な手法を提案する。
この目的を達成するために、ソースドメインからターゲットドメインにカテゴリの基本概念を転送する階層的なプロトタイプモジュールを設計し、基礎となる推論プロセスを説明するためにドメイン共有プロトタイプを学習する。
総合的な実験により,提案手法は有効かつ直感的な説明を提供するだけでなく,従来の最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-12T06:36:41Z) - Transfer learning with affine model transformation [18.13383101189326]
本稿では,アフィンモデル転送と呼ばれる,伝達学習の一般的なクラスについて述べる。
アフィンモデル転送は、ニューラル特徴抽出器に基づく最も一般的な手順を含む、様々な既存手法を幅広く包含していることが示されている。
論文 参考訳(メタデータ) (2022-10-18T10:50:24Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Model-Based Counterfactual Synthesizer for Interpretation [40.01787107375103]
機械学習モデルを解釈するためのモデルベース対実合成器(MCS)フレームワークを提案する。
まずモデルに基づく逆ファクト過程を分析し、条件付き生成逆数ネット(CGAN)を用いてベースシンセサイザーを構築する。
それらの希少なクエリに対する反ファクト宇宙をよりよく近似するために,MCSフレームワークのトレーニングを行うために,傘サンプリング手法を新たに採用した。
論文 参考訳(メタデータ) (2021-06-16T17:09:57Z) - PermuteAttack: Counterfactual Explanation of Machine Learning Credit
Scorecards [0.0]
本稿では、金融における小売クレジットスコアリングに使用される機械学習(ML)モデルの検証と説明のための新しい方向性と方法論について述べる。
提案するフレームワークは人工知能(AI)のセキュリティと敵MLの分野からモチベーションを引き出す。
論文 参考訳(メタデータ) (2020-08-24T00:05:13Z) - Marginal likelihood computation for model selection and hypothesis
testing: an extensive review [66.37504201165159]
この記事では、このトピックの最先端に関する総合的な研究について紹介する。
さまざまなテクニックの制限、メリット、コネクション、差異を強調します。
また、不適切な事前利用の問題や解決法についても述べる。
論文 参考訳(メタデータ) (2020-05-17T18:31:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。