論文の概要: Quantization Range Estimation for Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2510.04044v1
- Date: Sun, 05 Oct 2025 05:35:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.418571
- Title: Quantization Range Estimation for Convolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークの量子化範囲推定
- Authors: Bingtao Yang, Yujia Wang, Mengzhi Jiao, Hongwei Huo,
- Abstract要約: 学習後量子化のための量子化性能を改善するための範囲推定法を提案する。
実験により,本手法は画像分類タスクにおいて,トップ1の精度で最先端の性能を向上することを示した。
- 参考スコア(独自算出の注目度): 12.047887178191134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Post-training quantization for reducing the storage of deep neural network models has been demonstrated to be an effective way in various tasks. However, low-bit quantization while maintaining model accuracy is a challenging problem. In this paper, we present a range estimation method to improve the quantization performance for post-training quantization. We model the range estimation into an optimization problem of minimizing quantization errors by layer-wise local minima. We prove this problem is locally convex and present an efficient search algorithm to find the optimal solution. We propose the application of the above search algorithm to the transformed weights space to do further improvement in practice. Our experiments demonstrate that our method outperforms state-of-the-art performance generally on top-1 accuracy for image classification tasks on the ResNet series models and Inception-v3 model. The experimental results show that the proposed method has almost no loss of top-1 accuracy in 8-bit and 6-bit settings for image classifications, and the accuracy of 4-bit quantization is also significantly improved. The code is available at https://github.com/codeiscommitting/REQuant.
- Abstract(参考訳): 深層ニューラルネットワークモデルの記憶量を削減するための後学習量子化は、様々なタスクにおいて効果的な方法であることが示されている。
しかし、モデル精度を維持しながら低ビット量子化は難しい問題である。
本稿では,学習後の量子化における量子化性能を改善するための範囲推定法を提案する。
我々は,範囲推定を,レイヤワイド局所最小値による量子化誤差の最小化という最適化問題にモデル化する。
本稿では,この問題が局所凸であることを証明し,最適解を見つけるための効率的な探索アルゴリズムを提案する。
本稿では, 上記の探索アルゴリズムを変換重み空間に適用し, 実際にさらに改良する手法を提案する。
本研究では,ResNet シリーズモデルと Inception-v3 モデルを用いた画像分類タスクにおいて,トップ1 の精度において,提案手法が最先端性能より優れていることを示す。
実験の結果,画像分類における8ビットと6ビットの設定において,提案手法はトップ1の精度をほとんど損なわず,また4ビットの量子化の精度も大幅に向上した。
コードはhttps://github.com/codeiscommitting/REQuantで公開されている。
関連論文リスト
- Pushing the Limits of Low-Bit Optimizers: A Focus on EMA Dynamics [64.62231094774211]
ステートフル(例えばアダム)は、最適収束を達成するために、モデルサイズを2倍も補助情報を維持する。
SOLOにより、アダムスタイルは3ビットまたは2ビットの精度で量子化された状態を維持することができる。
したがって、SOLOはAdamスタイルにシームレスに適用でき、精度の低下を最小限に抑えることができる。
論文 参考訳(メタデータ) (2025-05-01T06:47:45Z) - GAQAT: gradient-adaptive quantization-aware training for domain generalization [54.31450550793485]
そこで本研究では,DGのためのGAQAT(Gradient-Adaptive Quantization-Aware Training)フレームワークを提案する。
我々のアプローチは、低精度量子化におけるスケール・グラディエント・コンフリクト問題を特定することから始まる。
GAQATフレームワークの有効性を実験により検証した。
論文 参考訳(メタデータ) (2024-12-07T06:07:21Z) - Quantune: Post-training Quantization of Convolutional Neural Networks
using Extreme Gradient Boosting for Fast Deployment [15.720551497037176]
本稿では,量子化の構成の探索を高速化するために,Quantune という自動チューニングを提案する。
我々は、Quantuneが6つのCNNモデルに対して0.07 0.65%の精度で、量子化の探索時間を約36.5倍削減することを示した。
論文 参考訳(メタデータ) (2022-02-10T14:05:02Z) - Sharpness-aware Quantization for Deep Neural Networks [45.150346855368]
シャープネス・アウェア量子化(SAQ)は,シャープネス・アウェア最小化(SAM)がモデル圧縮に与える影響を探索する新しい手法である。
本研究では,SAQにより量子化モデルの一般化性能が向上し,SOTAの結果が均一に量子化されることを示す。
論文 参考訳(メタデータ) (2021-11-24T05:16:41Z) - One Model for All Quantization: A Quantized Network Supporting Hot-Swap
Bit-Width Adjustment [36.75157407486302]
多様なビット幅をサポートする全量子化のためのモデルを訓練する手法を提案する。
重みの多様性を高めるためにウェーブレット分解と再構成を用いる。
同じ精度で訓練された専用モデルに匹敵する精度が得られる。
論文 参考訳(メタデータ) (2021-05-04T08:10:50Z) - Learnable Companding Quantization for Accurate Low-bit Neural Networks [3.655021726150368]
ディープニューラルネットワークの量子化は、メモリ消費の削減と推論速度の向上に有効な方法である。
非常に低ビットモデルがフル精度モデルに匹敵する精度を達成することは、まだ困難です。
2,3,4ビットモデルのための新しい非一様量子化手法として学習可能なコンパイル量子化(LCQ)を提案する。
論文 参考訳(メタデータ) (2021-03-12T09:06:52Z) - DAQ: Distribution-Aware Quantization for Deep Image Super-Resolution
Networks [49.191062785007006]
画像超解像のための深い畳み込みニューラルネットワークの定量化は、計算コストを大幅に削減する。
既存の作業は、4ビット以下の超低精度の厳しい性能低下に苦しむか、または性能を回復するために重い微調整プロセスを必要とします。
高精度なトレーニングフリー量子化を実現する新しい分散認識量子化方式(DAQ)を提案する。
論文 参考訳(メタデータ) (2020-12-21T10:19:42Z) - Searching for Low-Bit Weights in Quantized Neural Networks [129.8319019563356]
低ビットの重みとアクティベーションを持つ量子ニューラルネットワークは、AIアクセラレータを開発する上で魅力的なものだ。
本稿では、任意の量子化ニューラルネットワークにおける離散重みを探索可能な変数とみなし、差分法を用いて正確に探索する。
論文 参考訳(メタデータ) (2020-09-18T09:13:26Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
本稿では,浮動小数点演算を除去するために,AQDと呼ばれる高精度な量子化オブジェクト検出ソリューションを提案する。
我々のAQDは、非常に低ビットのスキームの下での完全精度と比較して、同等またはそれ以上の性能を実現しています。
論文 参考訳(メタデータ) (2020-07-14T09:07:29Z) - Least squares binary quantization of neural networks [19.818087225770967]
値が-1と1にマップされる二項量子化に焦点を当てる。
2ビット対1ビット量子化のパリト最適性に触発されて、証明可能な最小二乗誤差を持つ新しい2ビット量子化を導入する。
論文 参考訳(メタデータ) (2020-01-09T00:01:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。