論文の概要: A Clinical-grade Universal Foundation Model for Intraoperative Pathology
- arxiv url: http://arxiv.org/abs/2510.04861v1
- Date: Mon, 06 Oct 2025 14:48:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.911871
- Title: A Clinical-grade Universal Foundation Model for Intraoperative Pathology
- Title(参考訳): 術中病理におけるUniversal Foundationモデルの検討
- Authors: Zihan Zhao, Fengtao Zhou, Ronggang Li, Bing Chu, Xinke Zhang, Xueyi Zheng, Ke Zheng, Xiaobo Wen, Jiabo Ma, Yihui Wang, Jiewei Chen, Chengyou Zheng, Jiangyu Zhang, Yongqin Wen, Jiajia Meng, Ziqi Zeng, Xiaoqing Li, Jing Li, Dan Xie, Yaping Ye, Yu Wang, Hao Chen, Muyan Cai,
- Abstract要約: CRISPは8つの医療センターから10万以上の凍結した部位で開発された臨床段階の基礎モデルである。
CRISPは15,000回以上の術中スライドで, ほぼ100回にわたり評価された。
CRISPは現実世界の条件下で高い診断精度を保ち、92.6%の症例で直接外科的決定を下した。
- 参考スコア(独自算出の注目度): 18.600671472625866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intraoperative pathology is pivotal to precision surgery, yet its clinical impact is constrained by diagnostic complexity and the limited availability of high-quality frozen-section data. While computational pathology has made significant strides, the lack of large-scale, prospective validation has impeded its routine adoption in surgical workflows. Here, we introduce CRISP, a clinical-grade foundation model developed on over 100,000 frozen sections from eight medical centers, specifically designed to provide Clinical-grade Robust Intraoperative Support for Pathology (CRISP). CRISP was comprehensively evaluated on more than 15,000 intraoperative slides across nearly 100 retrospective diagnostic tasks, including benign-malignant discrimination, key intraoperative decision-making, and pan-cancer detection, etc. The model demonstrated robust generalization across diverse institutions, tumor types, and anatomical sites-including previously unseen sites and rare cancers. In a prospective cohort of over 2,000 patients, CRISP sustained high diagnostic accuracy under real-world conditions, directly informing surgical decisions in 92.6% of cases. Human-AI collaboration further reduced diagnostic workload by 35%, avoided 105 ancillary tests and enhanced detection of micrometastases with 87.5% accuracy. Together, these findings position CRISP as a clinical-grade paradigm for AI-driven intraoperative pathology, bridging computational advances with surgical precision and accelerating the translation of artificial intelligence into routine clinical practice.
- Abstract(参考訳): 術中病理は精密手術に欠かせないが,臨床効果は診断の複雑さと高品質な凍結切除データの使用が制限されている。
計算病理学は大きな進歩を遂げてきたが、大規模で予測された検証の欠如により、外科的ワークフローにおける定期的な採用が妨げられている。
そこで本研究では,8つの医療センターから10,000以上の凍結部を対象とし,臨床グレードのロバスト術中治療支援(CRISP)の提供を目的として,臨床グレードの基盤モデルであるCRISPを紹介する。
CRISPは, 良性悪性度判定, 鍵的術中意思決定, 汎発がん検出などを含む, 約100の症例を対象とした15,000以上の術中スライドを総合的に評価した。
このモデルは、様々な施設、腫瘍タイプ、解剖学的部位(以前は見えなかった部位やまれながんを含む)をまたいだ堅牢な一般化を示した。
CRISPは2000人以上の患者を対象に、現実世界の状況下で高い診断精度を保ち、92.6%の患者で直接外科的決定を下した。
人間とAIのコラボレーションにより、診断作業の負荷はさらに35%削減され、105回の補助検査が回避され、87.5%の精度でマイクロメタスターゼの検出が強化された。
これらの知見は, CRISPを, 外科的精度で計算の進歩を橋渡しし, 定期的な臨床実践への人工知能の翻訳を加速させる, 術中病理学における臨床段階のパラダイムとして位置づけた。
関連論文リスト
- A Disease-Centric Vision-Language Foundation Model for Precision Oncology in Kidney Cancer [54.58205672910646]
RenalCLIPは、腎腫瘤の特徴、診断、予後のための視覚言語基盤モデルである。
腎がんの完全な臨床ワークフローにまたがる10のコアタスクにおいて、優れたパフォーマンスと優れた一般化性を実現した。
論文 参考訳(メタデータ) (2025-08-22T17:48:19Z) - An Agentic System for Rare Disease Diagnosis with Traceable Reasoning [69.46279475491164]
大型言語モデル(LLM)を用いた最初のまれな疾患診断エージェントシステムであるDeepRareを紹介する。
DeepRareは、まれな疾患の診断仮説を分類し、それぞれに透明な推論の連鎖が伴う。
このシステムは2,919の疾患に対して異常な診断性能を示し、1013の疾患に対して100%の精度を達成している。
論文 参考訳(メタデータ) (2025-06-25T13:42:26Z) - RadFabric: Agentic AI System with Reasoning Capability for Radiology [61.25593938175618]
RadFabricは、総合的なCXR解釈のための視覚的およびテキスト分析を統合するマルチエージェント、マルチモーダル推論フレームワークである。
システムは、病理診断に特殊なCXRエージェント、正確な解剖学的構造に視覚所見をマッピングする解剖学的解釈エージェント、および視覚的、解剖学的、臨床データを透明かつ証拠に基づく診断に合成する大規模なマルチモーダル推論モデルを利用した推論エージェントを使用する。
論文 参考訳(メタデータ) (2025-06-17T03:10:33Z) - PathBench: A comprehensive comparison benchmark for pathology foundation models towards precision oncology [33.51485504161335]
病理基盤モデル(PFM)の最初の包括的なベンチマークであるPathBenchを紹介する。
我々のフレームワークは大規模データを組み込んで,PFMの客観的比較を可能にする。
当院では10病院で8,549人の患者から15,888件のWSIを収集し,64件以上の診断・予後調査を行った。
論文 参考訳(メタデータ) (2025-05-26T16:42:22Z) - Examining Deployment and Refinement of the VIOLA-AI Intracranial Hemorrhage Model Using an Interactive NeoMedSys Platform [0.7653237341032667]
現在の研究では、AIモデルの効率的なデプロイメントと改善を可能にする、NeoMedSysと呼ばれる放射線学ソフトウェアプラットフォームについて説明している。
実地臨床環境でのNeoMedSysの実行可能性と有効性について検討した。
論文 参考訳(メタデータ) (2025-05-14T13:33:38Z) - PathOrchestra: A Comprehensive Foundation Model for Computational Pathology with Over 100 Diverse Clinical-Grade Tasks [39.97710183184273]
本稿では,300Kの病理スライドからなるデータセット上で,自己教師型学習を通じて学習した多種多様な病理基盤モデルPathOrchestraを提案する。
このモデルは、61のプライベートデータセットと51のパブリックデータセットを組み合わせて、112の臨床的タスクで厳格に評価された。
PathOrchestraは27,755のWSIと9,415,729のROIで例外的なパフォーマンスを示し、47のタスクで0.950以上の精度を達成した。
論文 参考訳(メタデータ) (2025-03-31T17:28:02Z) - AI-assisted prostate cancer detection and localisation on biparametric MR by classifying radiologist-positives [5.75804178993065]
本稿では,がん診断の総合的精度を向上させるためのディープラーニングモデルを提案する。
一つのボクセルレベルの分類モデルを構築し、単純なパーセンテージ閾値で正のケースを判定する。
2つの臨床データから得られた実験から,提案手法が診断精度を向上させることを示す。
論文 参考訳(メタデータ) (2024-10-30T14:59:57Z) - Analysis of the 2024 BraTS Meningioma Radiotherapy Planning Automated Segmentation Challenge [45.3253187215396]
2024年脳腫瘍髄膜腫放射線療法(BraTS-MEN-RT)は、自動セグメンテーションアルゴリズムの進歩を目的とした課題である。
我々はBraTS-MEN-RTチャレンジの設計と結果について述べる。
論文 参考訳(メタデータ) (2024-05-28T17:25:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。