論文の概要: Towards Data-Efficient Medical Imaging: A Generative and Semi-Supervised Framework
- arxiv url: http://arxiv.org/abs/2510.06123v1
- Date: Tue, 07 Oct 2025 17:03:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 17:57:08.366409
- Title: Towards Data-Efficient Medical Imaging: A Generative and Semi-Supervised Framework
- Title(参考訳): データ効率のよい医用イメージングを目指して : ジェネレーティブで半監督的なフレームワーク
- Authors: Mosong Ma, Tania Stathaki, Michalis Lazarou,
- Abstract要約: SSGNetは、分類とセグメンテーションの両方を強化するために、クラス固有の生成モデリングと反復的な半教師付き擬似ラベリングを組み合わせた統合フレームワークである。
複数の医用画像ベンチマークによる実験では、分類とセグメンテーションのパフォーマンスが一貫した向上を示した。
- 参考スコア(独自算出の注目度): 7.361236630859648
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning in medical imaging is often limited by scarce and imbalanced annotated data. We present SSGNet, a unified framework that combines class specific generative modeling with iterative semisupervised pseudo labeling to enhance both classification and segmentation. Rather than functioning as a standalone model, SSGNet augments existing baselines by expanding training data with StyleGAN3 generated images and refining labels through iterative pseudo labeling. Experiments across multiple medical imaging benchmarks demonstrate consistent gains in classification and segmentation performance, while Frechet Inception Distance analysis confirms the high quality of generated samples. These results highlight SSGNet as a practical strategy to mitigate annotation bottlenecks and improve robustness in medical image analysis.
- Abstract(参考訳): 医用画像における深層学習は、希少かつ不均衡な注釈付きデータによって制限されることが多い。
本稿では,クラス固有の生成モデルと反復的半教師付き擬似ラベリングを組み合わせた統合フレームワークSSGNetについて述べる。
スタンドアロンモデルとして機能する代わりに、SSGNetはStyleGAN3で生成されたトレーニングデータを拡張し、反復的な擬似ラベリングを通じてラベルを精査することによって、既存のベースラインを拡張している。
複数の医用画像ベンチマークを用いた実験では、分類とセグメンテーションのパフォーマンスが一貫した向上を示し、Frechet Inception Distance解析では、生成したサンプルの高品質を確認する。
これらの結果から,SSGNetは診断ボトルネックを緩和し,医用画像解析の堅牢性を向上させるための実践的戦略として注目されている。
関連論文リスト
- Semi-Supervised Biomedical Image Segmentation via Diffusion Models and Teacher-Student Co-Training [7.915123555266876]
セマンティックセグメンテーションの深層学習は, 医用画像の解剖学的, 病理学的構造を正確に同定する上で, 優れた成果を上げている。
多くの場合、大きなアノテートされたトレーニングデータセットを必要とするため、臨床環境でのスケーラビリティが制限される。
本稿では, バイオメディカルイメージセグメンテーションのための半教師型教員学生フレームワークについて紹介する。
論文 参考訳(メタデータ) (2025-04-02T09:41:43Z) - Explanations of Classifiers Enhance Medical Image Segmentation via
End-to-end Pre-training [37.11542605885003]
医用画像セグメンテーションは、ディープニューラルネットワークを用いて、胸部X線写真などの医用画像の異常な構造を特定し、発見することを目的としている。
我々の研究は、よく訓練された分類器から説明を集め、セグメンテーションタスクの擬似ラベルを生成する。
次に、インテグレート・グラディエント(IG)法を用いて、分類器から得られた説明を蒸留し、強化し、大規模診断指向のローカライゼーション・ラベル(DoLL)を生成する。
これらのDLLアノテーション付き画像は、新型コロナウイルス感染症、肺、心臓、鎖骨などの下流のセグメンテーションタスクのために、モデルを微調整する前に事前訓練するために使用される。
論文 参考訳(メタデータ) (2024-01-16T16:18:42Z) - Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation [9.93871075239635]
より少ないアノテーションで医用画像のセグメンテーションを行うための平均教師ネットワーク上に構築されたPLGDFフレームワークを提案する。
本稿では,ラベル付きデータとラベルなしデータを組み合わせてデータセットを効果的に拡張する,新しい擬似ラベル利用方式を提案する。
本フレームワークは,最先端の6つの半教師あり学習手法と比較して,優れた性能が得られる。
論文 参考訳(メタデータ) (2023-11-17T06:36:43Z) - Learning of Inter-Label Geometric Relationships Using Self-Supervised
Learning: Application To Gleason Grade Segmentation [4.898744396854313]
そこで本研究では,PCaの病理組織像に対して,異なる疾患ラベル間の幾何学的関係を学習して合成する方法を提案する。
我々はGleasonスコアを用いた弱教師付きセグメンテーション手法を用いて、疾患領域をセグメンテーションする。
得られたセグメンテーションマップは、行方不明のマスクセグメントを予測するためにShaRe-Net(ShaRe-Net)をトレーニングするために使用される。
論文 参考訳(メタデータ) (2021-10-01T13:47:07Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
不完全アノテーションを用いた胸部X線分割のための新しいカスケードロバスト学習フレームワークを提案する。
モデルは3つの独立したネットワークから成り,ピアネットワークから有用な情報を効果的に学習できる。
提案手法は,従来の手法と比較して,セグメント化タスクの精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-04-05T15:50:16Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
セグメンテーションネットワークを訓練する学生・教師のアプローチに基づく,新しい不確実性誘導半教師学習を提案する。
提案するフレームワークは,様々な画像モダリティにまたがるバイオメディカルイメージセグメンテーションに有効である。
論文 参考訳(メタデータ) (2021-03-02T23:14:25Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
病理組織像における腺分節に対するPRS2モデルを提案する。
このモデルはセグメンテーションネットワーク(S-Net)とペア関係ネットワーク(PR-Net)から構成される。
我々は,GlaSデータセットの最近の5つの手法とCRAGデータセットの最近の3つの手法を比較した。
論文 参考訳(メタデータ) (2020-08-06T15:02:38Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。