論文の概要: Scalable multilingual PII annotation for responsible AI in LLMs
- arxiv url: http://arxiv.org/abs/2510.06250v1
- Date: Fri, 03 Oct 2025 21:40:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 16:41:20.057173
- Title: Scalable multilingual PII annotation for responsible AI in LLMs
- Title(参考訳): LLMにおける責任AIのためのスケーラブル多言語PIIアノテーション
- Authors: Bharti Meena, Joanna Skubisz, Harshit Rajgarhia, Nand Dave, Kiran Ganesh, Shivali Dalmia, Abhishek Mukherji, Vasudevan Sundarababu, Olga Pospelova,
- Abstract要約: この研究は、13の未表現ローカライズにまたがる高品質なPIIアノテーションのために設計されたスケーラブルな多言語データキュレーションフレームワークを導入する。
我々のフェーズド・ヒューマン・イン・ザ・ループの方法論は、言語学の専門知識と厳格な品質保証を組み合わせることで、リコールと偽陽性率を大幅に改善する。
- 参考スコア(独自算出の注目度): 0.0917536845617986
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Large Language Models (LLMs) gain wider adoption, ensuring their reliable handling of Personally Identifiable Information (PII) across diverse regulatory contexts has become essential. This work introduces a scalable multilingual data curation framework designed for high-quality PII annotation across 13 underrepresented locales, covering approximately 336 locale-specific PII types. Our phased, human-in-the-loop annotation methodology combines linguistic expertise with rigorous quality assurance, leading to substantial improvements in recall and false positive rates from pilot, training, and production phases. By leveraging inter-annotator agreement metrics and root-cause analysis, the framework systematically uncovers and resolves annotation inconsistencies, resulting in high-fidelity datasets suitable for supervised LLM fine-tuning. Beyond reporting empirical gains, we highlight common annotator challenges in multilingual PII labeling and demonstrate how iterative, analytics-driven pipelines can enhance both annotation quality and downstream model reliability.
- Abstract(参考訳): 大規模言語モデル(LLM)が広く採用されるにつれて、さまざまな規制状況において、PII(Personally Identible Information)の信頼性の高い取り扱いが不可欠になっている。
本研究は、13の未表現ローカライズにまたがる高品質なPIIアノテーションのために設計されたスケーラブルな多言語データキュレーションフレームワークを導入し、約336のローカライズ固有のPIIタイプをカバーする。
我々のフェーズド・ヒューマン・イン・ザ・ループの方法論は、言語学の専門知識と厳格な品質保証を組み合わせることで、パイロット、トレーニング、生産段階からのリコールと偽陽性率を大幅に改善する。
アノテーション間の合意メトリクスと根本原因分析を活用することで、このフレームワークは、アノテーションの不整合を体系的に発見し、解決し、結果として、教師付きLLM微調整に適した高忠実度データセットを生成する。
経験的ゲインの報告以外にも、多言語PIIラベリングにおける一般的なアノテータの課題を強調し、反復的な分析駆動パイプラインがアノテーションの品質とダウンストリームモデルの信頼性をいかに向上させるかを実証する。
関連論文リスト
- TASE: Token Awareness and Structured Evaluation for Multilingual Language Models [8.058965963418785]
TASEは、大規模言語モデルのトークンレベルの情報に対する認識と推論能力を評価するために設計されたベンチマークである。
TASEは、トークン認識と構造理解、中国語、英語、韓国語にまたがる10のタスクを2つの中核カテゴリでカバーしている。
我々は、O3、Claude 4、Gemini 2.5 Pro、DeepSeek-R1を含む30以上の主要な商用およびオープンソースLLMを評価した。
論文 参考訳(メタデータ) (2025-08-07T15:11:17Z) - Multilingual Self-Taught Faithfulness Evaluators [11.200203292660758]
合成多言語要約データからのみ学習するフレームワークである。
我々のフレームワークは、最先端の英語評価器や機械翻訳に基づくアプローチなど、既存のベースラインよりも改善されている。
論文 参考訳(メタデータ) (2025-07-28T12:01:59Z) - CATER: Leveraging LLM to Pioneer a Multidimensional, Reference-Independent Paradigm in Translation Quality Evaluation [0.0]
Comprehensive AI-assisted Translation Edit Ratio (CATER)は、機械翻訳(MT)の品質を評価するための新しいフレームワークである。
大きな言語モデル(LLM)は、慎重に設計されたプロンプトベースのプロトコルによって使用される。
論文 参考訳(メタデータ) (2024-12-15T17:45:34Z) - LLM-based Translation Inference with Iterative Bilingual Understanding [52.46978502902928]
大規模言語モデル(LLM)の言語間機能に基づいた,新しい反復的バイリンガル理解翻訳法を提案する。
LLMの言語横断的能力により、ソース言語とターゲット言語を別々にコンテキスト理解することが可能になる。
提案したIBUTは、いくつかの強力な比較法より優れている。
論文 参考訳(メタデータ) (2024-10-16T13:21:46Z) - Evaluating Knowledge-based Cross-lingual Inconsistency in Large Language Models [16.942897938964638]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示している。
彼らの成功にもかかわらず、これらのモデルはしばしば異なる言語で同じ概念を処理する際に大きな矛盾を示す。
本研究は,LLMにおける言語間不整合の存在,これらの不整合が現れる特定の側面,LLMの言語間整合性と多言語機能との相関の3つの主要な疑問に焦点をあてる。
論文 参考訳(メタデータ) (2024-07-01T15:11:37Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - Towards a Deep Understanding of Multilingual End-to-End Speech
Translation [52.26739715012842]
我々は22言語以上で訓練された多言語エンドツーエンド音声翻訳モデルで学習した表現を解析する。
我々は分析から3つの大きな発見を得た。
論文 参考訳(メタデータ) (2023-10-31T13:50:55Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Document-Level Machine Translation with Large Language Models [91.03359121149595]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクに対して、一貫性、凝集性、関連性、流動性のある回答を生成することができる。
本稿では,LLMの談話モデルにおける能力について詳細に評価する。
論文 参考訳(メタデータ) (2023-04-05T03:49:06Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
外部リソースを使わずに言語間で単語レベルの表現と文レベルの表現を整列する正規化手法を提案する。
言語間言語理解タスクの実験により、我々のモデルは、数ショットとゼロショットの両方のシナリオにおいて、最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-30T08:56:53Z) - A Bayesian Multilingual Document Model for Zero-shot Topic Identification and Discovery [1.9215779751499527]
モデルは多言語シナリオへの BaySMM [Kesiraju et al 2020] の拡張である。
学習した不確実性を線形分類器で伝達し、ゼロショットの言語間話題識別に役立てる。
我々は、現在のデータセットを深く掘り下げることで、ゼロショット設定での言語間トピックの識別を再考する。
論文 参考訳(メタデータ) (2020-07-02T19:55:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。