論文の概要: Linguistically Informed Tokenization Improves ASR for Underresourced Languages
- arxiv url: http://arxiv.org/abs/2510.06461v1
- Date: Tue, 07 Oct 2025 20:54:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 16:41:20.200244
- Title: Linguistically Informed Tokenization Improves ASR for Underresourced Languages
- Title(参考訳): 言語的にインフォームドされたトークン化は、アンダーリソース言語のためのASRを改善する
- Authors: Massimo Daul, Alessio Tosolini, Claire Bowern,
- Abstract要約: オーストラリア原住民言語Yan-nhangu上でwav2vec2 ASRモデルを微調整する。
言語的に情報を得た音声トークン化システムは、WERとCERを大幅に改善する。
ASRモデルの出力を手作業で補正することは、音声をスクラッチから手書きするよりもはるかに高速である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic speech recognition (ASR) is a crucial tool for linguists aiming to perform a variety of language documentation tasks. However, modern ASR systems use data-hungry transformer architectures, rendering them generally unusable for underresourced languages. We fine-tune a wav2vec2 ASR model on Yan-nhangu, a dormant Indigenous Australian language, comparing the effects of phonemic and orthographic tokenization strategies on performance. In parallel, we explore ASR's viability as a tool in a language documentation pipeline. We find that a linguistically informed phonemic tokenization system substantially improves WER and CER compared to a baseline orthographic tokenization scheme. Finally, we show that hand-correcting the output of an ASR model is much faster than hand-transcribing audio from scratch, demonstrating that ASR can work for underresourced languages.
- Abstract(参考訳): 音声認識(ASR)は言語学者にとって,様々な言語ドキュメントタスクの実行を目的とした重要なツールである。
しかし、現代のASRシステムではデータ・ハングリー・トランスフォーマー・アーキテクチャが使われており、低リソースの言語では一般的に使用できない。
オーストラリア原住民言語Yan-nhangu上でwav2vec2 ASRモデルを微調整し,音素および正書法トークン化戦略が性能に与える影響を比較した。
並行して、言語ドキュメンテーションパイプラインにおけるツールとしてのASRの生存可能性について検討する。
言語的に情報を得た音素トークン化システムでは,ベースラインの正書法よりもWERとCERが大幅に向上することがわかった。
最後に、ASRモデルの出力をスクラッチから手書きするよりもはるかに高速に修正できることを示し、ASRがアンダーリソース言語で動作可能であることを示す。
関連論文リスト
- Efficient Multilingual ASR Finetuning via LoRA Language Experts [59.27778147311189]
本稿では,WhisperをベースとしたLoRA言語エキスパートによる多言語ASRをカスタマイズするための効率的な微調整フレームワークを提案する。
LoRAエキスパート融合や知識蒸留により,本手法は従来の微調整法よりも目標言語での認識性能が向上する。
実験の結果,提案モデルでは,言語認識および言語認識のシナリオにおいて,約10%と15%の性能向上が得られた。
論文 参考訳(メタデータ) (2025-06-11T07:06:27Z) - Enhancing Multilingual ASR for Unseen Languages via Language Embedding Modeling [50.62091603179394]
最も先進的なASRモデルの1つであるWhisperは99の言語を効果的に扱う。
しかし、ウィスパーは未確認の言語と戦っているが、それらは事前訓練には含まれていない。
本研究では,これらの関係を利用して未知言語上でのASR性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-12-21T04:05:43Z) - Improving Speech Emotion Recognition in Under-Resourced Languages via Speech-to-Speech Translation with Bootstrapping Data Selection [49.27067541740956]
音声感情認識(SER)は、人間とコンピュータの自然な相互作用が可能な汎用AIエージェントを開発する上で重要な要素である。
英語や中国語以外の言語でラベル付きデータが不足しているため、堅牢な多言語SERシステムの構築は依然として困難である。
本稿では,低SERリソース言語におけるSERの性能向上のための手法を提案する。
論文 参考訳(メタデータ) (2024-09-17T08:36:45Z) - Enabling ASR for Low-Resource Languages: A Comprehensive Dataset Creation Approach [0.6445605125467574]
本研究では,オーディオブックからASRトレーニングデータセットを生成するための新しいパイプラインを提案する。
これらのオーディオブックの共通構造は、音声セグメントの幅が広いため、ユニークな課題である。
本稿では,音声を対応するテキストと効果的に整合させ,それをASR訓練に適した長さに分割する手法を提案する。
論文 参考訳(メタデータ) (2024-06-03T15:38:40Z) - Language-universal phonetic encoder for low-resource speech recognition [28.21805271848413]
我々は、低リソースのASR性能を改善するために、International Phonetic Alphabet (IPA) ベースの言語ユニバーサル音声モデルを活用する。
我々のアプローチと適応は、ドメインや言語ミスマッチしたシナリオであっても、極端に低リソースな言語に有効です。
論文 参考訳(メタデータ) (2023-05-19T10:24:30Z) - LAMASSU: Streaming Language-Agnostic Multilingual Speech Recognition and
Translation Using Neural Transducers [71.76680102779765]
自動音声認識(ASR)と音声翻訳(ST)はどちらもモデル構造としてニューラルトランスデューサを使用することができる。
ニューラルトランスデューサを用いた多言語音声認識および翻訳モデルであるLAMASSUを提案する。
論文 参考訳(メタデータ) (2022-11-05T04:03:55Z) - Learning ASR pathways: A sparse multilingual ASR model [31.147484652643282]
ASR経路は、言語固有のサブネットワーク(パス)を活性化するスパース多言語ASRモデルである。
重なり合うサブネットワークにより、共有パラメータは、共同でマルチリンガルトレーニングをすることで、低リソース言語への知識伝達を可能にする。
提案したASR経路は,高密度モデルと言語に依存しないプルーニングモデルの両方より優れ,低リソース言語の性能向上を実現している。
論文 参考訳(メタデータ) (2022-09-13T05:14:08Z) - ASR data augmentation in low-resource settings using cross-lingual
multi-speaker TTS and cross-lingual voice conversion [49.617722668505834]
提案手法は,モデル学習中に1つの話者のみを用いて音声合成と音声変換を行い,ASRシステムの改善を可能にする。
対象言語における1つの実話者のみを用いてデータ拡張法を用いて、有望なASRトレーニング結果を得ることが可能である。
論文 参考訳(メタデータ) (2022-03-29T11:55:30Z) - Streaming End-to-End Bilingual ASR Systems with Joint Language
Identification [19.09014345299161]
本稿では,ASRと言語識別の両方を実行するストリーミング,エンドツーエンド,バイリンガルシステムを提案する。
提案手法は、アメリカ合衆国で話される英語とスペイン語、インドで話される英語とヒンディー語という2つの言語対に適用される。
論文 参考訳(メタデータ) (2020-07-08T05:00:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。