論文の概要: AI-Driven Forecasting and Monitoring of Urban Water System
- arxiv url: http://arxiv.org/abs/2510.06631v1
- Date: Wed, 08 Oct 2025 04:28:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 16:41:20.291286
- Title: AI-Driven Forecasting and Monitoring of Urban Water System
- Title(参考訳): 都市水システムのAIによる予測とモニタリング
- Authors: Qiming Guo, Bishal Khatri, Hua Zhang, Wenlu Wang,
- Abstract要約: 地下水と排水パイプラインは市の運営に欠かせないが、漏れや浸透などの異常に悩まされている。
近年、人工知能は急速に進歩し、都市インフラにもますます応用されている。
地下パイプラインにおける漏洩検知の課題に対処する,統合型AIおよびリモートセンサフレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.652933022735071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Underground water and wastewater pipelines are vital for city operations but plagued by anomalies like leaks and infiltrations, causing substantial water loss, environmental damage, and high repair costs. Conventional manual inspections lack efficiency, while dense sensor deployments are prohibitively expensive. In recent years, artificial intelligence has advanced rapidly and is increasingly applied to urban infrastructure. In this research, we propose an integrated AI and remote-sensor framework to address the challenge of leak detection in underground water pipelines, through deploying a sparse set of remote sensors to capture real-time flow and depth data, paired with HydroNet - a dedicated model utilizing pipeline attributes (e.g., material, diameter, slope) in a directed graph for higher-precision modeling. Evaluations on a real-world campus wastewater network dataset demonstrate that our system collects effective spatio-temporal hydraulic data, enabling HydroNet to outperform advanced baselines. This integration of edge-aware message passing with hydraulic simulations enables accurate network-wide predictions from limited sensor deployments. We envision that this approach can be effectively extended to a wide range of underground water pipeline networks.
- Abstract(参考訳): 地下水と排水パイプラインは市の運営に欠かせないが、漏水や浸水などの異常に悩まされ、かなりの水害、環境被害、高い修理費用がかかる。
従来の手動検査では効率が悪く、高密度センサーの配備は違法に高価である。
近年、人工知能は急速に進歩し、都市インフラにもますます応用されている。
本研究では,ハイドロネット(HydroNet)と組み合わせて,高精度なモデリングのための有向グラフにおけるパイプライン特性(材料,直径,傾斜など)を利用した専用モデルである,リアルタイムフローと深度データを取得するために,微小なリモートセンサ群を配置することで,地下水パイプラインの漏れ検出の課題に対処する統合型AIおよびリモートセンサフレームワークを提案する。
実世界のキャンパス排水ネットワークデータセットによる評価により,我々のシステムは有効時空間水理データを収集し,HydroNetが高度ベースラインを上回り得ることを示す。
このエッジ対応メッセージパッシングと油圧シミュレーションを統合することで、限られたセンサー配置からネットワーク全体の正確な予測が可能になる。
我々は,この手法を広範囲の地下水パイプライン網に効果的に拡張できると考えている。
関連論文リスト
- Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
本稿では,人工知能アルゴリズムの利用と水質モニタリングのための高感度センシング技術に対処する車両プロトタイプを提案する。
車両には水質パラメータと水深を測定するための高品質なセンサーが装備されている。
ステレオカメラにより、実際の環境でのマクロプラスチックの検出と検出も可能である。
論文 参考訳(メタデータ) (2024-10-08T10:35:32Z) - TransGlow: Attention-augmented Transduction model based on Graph Neural
Networks for Water Flow Forecasting [4.915744683251151]
水量の水量予測は、水管理、洪水予測、洪水制御など様々な用途に有用である。
本稿では,GCRN(Graph Convolution Recurrent Neural Network)エンコーダデコーダの隠れ状態を増大させる時間予測モデルを提案する。
本稿では,河川,河川,湖上のカナダステーションのネットワークから,新たな水流のベンチマークデータセットを提案する。
論文 参考訳(メタデータ) (2023-12-10T18:23:40Z) - Localizing Anomalies in Critical Infrastructure using Model-Based Drift
Explanations [5.319765271848658]
ベイジアンネットワークを用いたネットワークをモデル化し,異常が重要なインフラシステムの力学に与える影響を解析する。
特に、モデルに基づく概念ドリフトの説明は異常の局所化に有望なツールであると主張する。
本手法がより一般的に重要なインフラに適用可能であることを示すために,本手法が電力系統におけるセンサ故障の局所化に有効であることを示す。
論文 参考訳(メタデータ) (2023-10-24T13:33:19Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
トレーニングフェーズ中に手動アノテーションを不要にする自己教師型ディープラーニングモデルであるDeepAquaを提案する。
我々は、光とレーダーをベースとしたウォーターマスクが一致する場合を利用して、水面と植物の両方を検知する。
実験の結果,DeepAquaの精度は7%向上し,Intersection Over Unionが27%,F1が14%向上した。
論文 参考訳(メタデータ) (2023-05-02T18:06:21Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - ADAPT: An Open-Source sUAS Payload for Real-Time Disaster Prediction and
Response with AI [55.41644538483948]
小型無人航空機システム(sUAS)は、多くの人道支援や災害対応作戦において顕著な構成要素となっている。
我々は,SUAS上にリアルタイムAIとコンピュータビジョンをデプロイするための,オープンソースのADAPTマルチミッションペイロードを開発した。
本研究では,河川氷の状態を監視し,破滅的な洪水現象をタイムリーに予測するための,リアルタイム・飛行中の氷分断の例を示す。
論文 参考訳(メタデータ) (2022-01-25T14:51:19Z) - Underwater Acoustic Networks for Security Risk Assessment in Public
Drinking Water Reservoirs [5.227907960942717]
我々は、水中イベントを検出し、分類し、ローカライズするための革新的なAIベースのアプローチを実装している。
貯水池におけるハイドロフォンネットワークの設置と利用の課題について論じる。
論文 参考訳(メタデータ) (2021-07-29T14:02:51Z) - Water Level Estimation Using Sentinel-1 Synthetic Aperture Radar Imagery
And Digital Elevation Models [0.0]
Sentinel-1 Synthetic Aperture Radar ImageryとDigital Elevation Modelデータセットを用いた新しい水位抽出手法を提案する。
実験の結果、このアルゴリズムは世界中の3つの貯水池で0.93mの低い平均誤差を達成した。
論文 参考訳(メタデータ) (2020-12-11T18:42:15Z) - Predictive Analytics for Water Asset Management: Machine Learning and
Survival Analysis [55.41644538483948]
本研究では,水管故障の予測のための統計的および機械学習の枠組みについて検討する。
スペイン,バルセロナの配水ネットワーク内の全管の故障記録を含むデータセットを用いて検討を行った。
その結果, 管形状, 年齢, 材質, 土壌被覆など, 重要な危険因子の影響が明らかにされた。
論文 参考訳(メタデータ) (2020-07-02T19:08:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。