論文の概要: MoRE-GNN: Multi-omics Data Integration with a Heterogeneous Graph Autoencoder
- arxiv url: http://arxiv.org/abs/2510.06880v1
- Date: Wed, 08 Oct 2025 10:48:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 16:41:20.445185
- Title: MoRE-GNN: Multi-omics Data Integration with a Heterogeneous Graph Autoencoder
- Title(参考訳): MoRE-GNN: 異種グラフオートエンコーダを用いたマルチオミクスデータ統合
- Authors: Zhiyu Wang, Sonia Koszut, Pietro Liò, Francesco Ceccarelli,
- Abstract要約: MoRE-GNNは生物学的に意味のある関係を捉え、既存の手法より優れている。
MoRE-GNNは、マルチオミクス統合を進めるための適応的でスケーラブルで解釈可能なフレームワークを提供する。
- 参考スコア(独自算出の注目度): 15.89170003903628
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of multi-omics single-cell data remains challenging due to high-dimensionality and complex inter-modality relationships. To address this, we introduce MoRE-GNN (Multi-omics Relational Edge Graph Neural Network), a heterogeneous graph autoencoder that combines graph convolution and attention mechanisms to dynamically construct relational graphs directly from data. Evaluations on six publicly available datasets demonstrate that MoRE-GNN captures biologically meaningful relationships and outperforms existing methods, particularly in settings with strong inter-modality correlations. Furthermore, the learned representations allow for accurate downstream cross-modal predictions. While performance may vary with dataset complexity, MoRE-GNN offers an adaptive, scalable and interpretable framework for advancing multi-omics integration.
- Abstract(参考訳): マルチオミクスの単一セルデータの統合は、高次元性と複雑なモダリティ関係のため、依然として困難である。
グラフ畳み込みとアテンション機構を組み合わせてデータから直接リレーショナルグラフを動的に構築する異種グラフオートエンコーダであるMoRE-GNN(Multi-omics Relational Edge Graph Neural Network)を導入する。
公開されている6つのデータセットの評価によると、MoRE-GNNは生物学的に意味のある関係を捉え、特にモダリティ間の相関が強い環境で、既存の手法より優れている。
さらに、学習された表現は、正確な下流のクロスモーダル予測を可能にする。
パフォーマンスはデータセットの複雑さによって異なるかもしれないが、MoRE-GNNは、マルチオミクス統合を進めるための適応的でスケーラブルで解釈可能なフレームワークを提供する。
関連論文リスト
- RelGNN: Composite Message Passing for Relational Deep Learning [56.48834369525997]
RelGNNはリレーショナルデータベースから構築されたグラフのユニークな構造特性を活用するために特別に設計された新しいGNNフレームワークである。
RelGNNは、Relbench(Fey et al., 2024)から30の多様な実世界のタスクで評価され、ほとんどのタスクで最先端のパフォーマンスを実現し、最大25%の改善を実現している。
論文 参考訳(メタデータ) (2025-02-10T18:58:40Z) - GraphSeqLM: A Unified Graph Language Framework for Omic Graph Learning [20.906136206438102]
Graph Neural Networks (GNN)は、大規模シグナル伝達経路とタンパク質-タンパク質相互作用ネットワークを解析するための堅牢なフレームワークを提供する。
生物シークエンスを組み込んだGNNを強化するフレームワークであるグラフシーケンス言語モデル(GraphSeqLM)を提案する。
論文 参考訳(メタデータ) (2024-12-20T11:05:26Z) - Graph-Augmented Relation Extraction Model with LLMs-Generated Support Document [7.0421339410165045]
本研究では,文レベルの関係抽出(RE)に対する新しいアプローチを提案する。
グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)を統合し、コンテキストに富んだサポートドキュメントを生成する。
そこで,CrossREデータセットを用いて実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-30T20:48:34Z) - Self-Supervised Graph Neural Networks for Enhanced Feature Extraction in Heterogeneous Information Networks [16.12856816023414]
本稿では,インターネットの急速な発展に伴う複雑なグラフデータ処理におけるグラフニューラルネットワーク(GNN)の適用と課題について考察する。
自己監督機構を導入することにより、グラフデータの多様性と複雑さに対する既存モデルの適合性を向上させることが期待されている。
論文 参考訳(メタデータ) (2024-10-23T07:14:37Z) - Relating-Up: Advancing Graph Neural Networks through Inter-Graph Relationships [17.978546172777342]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学ぶのに優れています。
彼らの成功にもかかわらず、GNNはグラフ間の関係のコンテキストを無視して制限される。
本稿では,グラフ間の関係を利用してGNNを強化するプラグイン・アンド・プレイモジュールであるRelating-Upを紹介する。
論文 参考訳(メタデータ) (2024-05-07T02:16:54Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNNはReinforceed, recursive, flexible neighborhood selection guided multi-relational Graph Neural Network architectureである。
RioGNNは、各関係の個々の重要性の認識により、説明性を高めた差別的なノード埋め込みを学ぶことができる。
論文 参考訳(メタデータ) (2021-04-16T04:30:06Z) - MTHetGNN: A Heterogeneous Graph Embedding Framework for Multivariate
Time Series Forecasting [4.8274015390665195]
我々は、異種グラフニューラルネットワーク(MTHetGNN)による多変量時系列予測と呼ばれる新しいエンドツーエンドディープラーニングモデルを提案する。
変数間の複雑な関係を特徴付けるため、MTHetGNNでは、各変数をグラフノードと見なす関係埋め込みモジュールを設計する。
時系列の特徴抽出に時間的埋め込みモジュールを導入し、知覚スケールの異なる畳み込みニューラルネットワーク(CNN)フィルタを含む。
論文 参考訳(メタデータ) (2020-08-19T18:21:22Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。