論文の概要: LLM-Assisted Modeling of Semantic Web-Enabled Multi-Agents Systems with AJAN
- arxiv url: http://arxiv.org/abs/2510.06911v1
- Date: Wed, 08 Oct 2025 11:45:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 16:41:20.460531
- Title: LLM-Assisted Modeling of Semantic Web-Enabled Multi-Agents Systems with AJAN
- Title(参考訳): LLMによるAJANを用いたセマンティックWeb対応マルチエージェントシステムのモデリング
- Authors: Hacane Hechehouche, Andre Antakli, Matthias Klusch,
- Abstract要約: AJANフレームワークはセマンティックWeb標準に基づいたマルチエージェントシステムを構築することができる。
RDF/RDFSとSPARQLベースのエージェント動作の適切な定義は、実際にはエージェントモデラーだけでなく、依然として大きなハードルである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There are many established semantic Web standards for implementing multi-agent driven applications. The AJAN framework allows to engineer multi-agent systems based on these standards. In particular, agent knowledge is represented in RDF/RDFS and OWL, while agent behavior models are defined with Behavior Trees and SPARQL to access and manipulate this knowledge. However, the appropriate definition of RDF/RDFS and SPARQL-based agent behaviors still remains a major hurdle not only for agent modelers in practice. For example, dealing with URIs is very error-prone regarding typos and dealing with complex SPARQL queries in large-scale environments requires a high learning curve. In this paper, we present an integrated development environment to overcome such hurdles of modeling AJAN agents and at the same time to extend the user community for AJAN by the possibility to leverage Large Language Models for agent engineering.
- Abstract(参考訳): マルチエージェント駆動アプリケーションの実装には、多くの確立されたセマンティックWeb標準がある。
AJANフレームワークは、これらの標準に基づいてマルチエージェントシステムを構築することができる。
特にエージェントの知識はRDF/RDFSとOWLで表現され、エージェントの振る舞いモデルは、その知識にアクセスして操作するために振舞い木とSPARQLで定義される。
しかしながら、RDF/RDFSとSPARQLベースのエージェント動作の適切な定義は、実際にはエージェントモデラーだけでなく、依然として大きなハードルとなっている。
例えば、タイプミスや大規模環境での複雑なSPARQLクエリの処理には、高い学習曲線が必要です。
本稿では,AJANエージェントをモデリングする際のハードルを克服すると同時に,エージェントエンジニアリングに大規模言語モデルを活用する可能性によって,AJANのユーザコミュニティを拡張するための統合開発環境を提案する。
関連論文リスト
- AgentRouter: A Knowledge-Graph-Guided LLM Router for Collaborative Multi-Agent Question Answering [51.07491603393163]
tAgentは知識グラフ誘導ルーティング問題としてマルチエージェントQAを定式化するフレームワークである。
エージェントアウトプットのソフトな監督と重み付けされた集約を活用することで、エージェントは多様なエージェントの相補的な強みを捉える、原則化された協調スキームを学ぶ。
論文 参考訳(メタデータ) (2025-10-06T23:20:49Z) - InfiAgent: Self-Evolving Pyramid Agent Framework for Infinite Scenarios [28.65914611521654]
InfiAgentはピラミッドのようなDAGベースのMulti-Agent Frameworkで、textbfinfiniteのシナリオに適用できる。
InfiAgentはADAS(類似の自動生成エージェントフレームワーク)と比較して9.9%高いパフォーマンスを実現している
論文 参考訳(メタデータ) (2025-09-26T15:44:09Z) - AgentScope 1.0: A Developer-Centric Framework for Building Agentic Applications [95.42093979627703]
AgentScopeは柔軟で効率的なツールベースのエージェント環境インタラクションをサポートする。
エージェントの動作をReActパラダイムに基盤として,エージェントレベルの高度なインフラストラクチャを提供します。
AgentScopeには、開発者フレンドリーなエクスペリエンスのための堅牢なエンジニアリングサポートも含まれている。
論文 参考訳(メタデータ) (2025-08-22T10:35:56Z) - AgentRE: An Agent-Based Framework for Navigating Complex Information Landscapes in Relation Extraction [10.65417796726349]
複雑なシナリオにおける関係抽出(RE)は、多種多様な関係型や単一の文内のエンティティ間のあいまいな関係のような課題に直面します。
本稿では,複雑なシナリオにおいてREを実現するために,大規模言語モデルの可能性を完全に活用するエージェントベースのREフレームワークであるAgentREを提案する。
論文 参考訳(メタデータ) (2024-09-03T12:53:05Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - Phantom -- A RL-driven multi-agent framework to model complex systems [1.0499611180329804]
Phantomは複雑なマルチエージェントシステムのエージェントベースのモデリングのためのRL駆動のフレームワークである。
MARL互換の方法でABM仕様を簡素化するツールを提供することを目標としている。
これらの特徴,その設計根拠,およびフレームワークを活用した2つの新しい環境について述べる。
論文 参考訳(メタデータ) (2022-10-12T08:37:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。