論文の概要: Evaluation of LLMs for Process Model Analysis and Optimization
- arxiv url: http://arxiv.org/abs/2510.07489v1
- Date: Wed, 08 Oct 2025 19:39:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-10 17:54:14.698662
- Title: Evaluation of LLMs for Process Model Analysis and Optimization
- Title(参考訳): プロセスモデル解析と最適化のためのLCMの評価
- Authors: Akhil Kumar, Jianliang Leon Zhao, Om Dobariya,
- Abstract要約: ゼロショット設定でChatGPT(モデルo3)のような訓練を受けていないバニラが、画像からBPMNプロセスモデルを理解するのに有効であることを示す。
また、LLMの「思考プロセス」とプロセス分析と最適化の文脈でより深い推論を行う能力についても検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we report our experience with several LLMs for their ability to understand a process model in an interactive, conversational style, find syntactical and logical errors in it, and reason with it in depth through a natural language (NL) interface. Our findings show that a vanilla, untrained LLM like ChatGPT (model o3) in a zero-shot setting is effective in understanding BPMN process models from images and answering queries about them intelligently at syntactic, logic, and semantic levels of depth. Further, different LLMs vary in performance in terms of their accuracy and effectiveness. Nevertheless, our empirical analysis shows that LLMs can play a valuable role as assistants for business process designers and users. We also study the LLM's "thought process" and ability to perform deeper reasoning in the context of process analysis and optimization. We find that the LLMs seem to exhibit anthropomorphic properties.
- Abstract(参考訳): 本稿では,対話型,対話型,対話型,構文的,論理的エラーの発見,自然言語(NL)インタフェースによる推論など,複数のLLMの経験を報告する。
ゼロショット設定のChatGPT(モデルo3)のような訓練を受けていないバニラは、画像からBPMNプロセスモデルを理解し、それらを構文、論理、セマンティックレベルの深さでインテリジェントに答えるのに有効である。
さらに、LLMの精度と有効性は、それぞれ異なる。
それにもかかわらず、実証分析の結果、LLMはビジネスプロセス設計者やユーザにとって貴重なアシスタントとして機能することが示された。
また、LLMの「思考プロセス」とプロセス分析と最適化の文脈でより深い推論を行う能力についても検討する。
LLMは人為的特性を示すと考えられる。
関連論文リスト
- NaViL: Rethinking Scaling Properties of Native Multimodal Large Language Models under Data Constraints [100.02131897927484]
本稿では,Multimodal Large Language Models(MLLM)のエンドツーエンドなネイティブトレーニングに焦点を当てる。
そこで我々は,NaViLと呼ばれるネイティブMLLMと,シンプルで費用対効果の高いレシピを組み合わせて提案する。
14のマルチモーダルベンチマークによる実験結果から,既存のMLLMに対するNaViLの競合性能が確認された。
論文 参考訳(メタデータ) (2025-10-09T17:59:37Z) - Deciphering Trajectory-Aided LLM Reasoning: An Optimization Perspective [35.898734823687576]
本稿では,メタ学習の観点から,大規模言語モデル(LLM)の推論能力を理解するためのフレームワークを提案する。
我々は,個別のタスクとして扱われる質問に対して,メタラーニング・セットアップとして推論タスクのトレーニングプロセスを定式化する。
我々の研究は、確立したメタ学習技術によってこれらのモデルを改善するための実践的な洞察を提供する。
論文 参考訳(メタデータ) (2025-05-26T10:52:17Z) - Scoring with Large Language Models: A Study on Measuring Empathy of Responses in Dialogues [3.2162648244439684]
本研究では,対話における応答の共感を測り,評価する上で,大規模言語モデルがいかに効果的かを調べるための枠組みを開発する。
我々の戦略は、最新かつ微調整されたLLMの性能を明示的で説明可能な特徴で近似することである。
以上の結果から,組込みのみを用いる場合,ジェネリックLLMに近い性能が得られることがわかった。
論文 参考訳(メタデータ) (2024-12-28T20:37:57Z) - LLM-as-an-Interviewer: Beyond Static Testing Through Dynamic LLM Evaluation [24.103034843158717]
LLM-as-an-Interviewerは,大規模言語モデル(LLM)を評価するための新しいパラダイムである。
このアプローチはマルチターンインタラクションを活用し、インタビュアーは応答に対するフィードバックを積極的に提供し、評価されたLCMにフォローアップ質問を提示する。
このフレームワークを用いてMATHとDepthQAタスクの6つのモデルを評価する。
論文 参考訳(メタデータ) (2024-12-10T15:00:32Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
大規模言語モデル(LLM)は、人間の行動や認知過程をシミュレートするエキサイティングな可能性を開いた。
しかし, LLMを人体用スタンドインとして活用する妥当性は, いまだに不明である。
本稿では,モデルの出力に対する各プロンプト成分の相対的寄与を定量化するために,シェープリー値に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T22:49:43Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - Improving Large Language Models in Event Relation Logical Prediction [33.88499005859982]
イベント関係抽出は、綿密な意味的理解と厳密な論理的推論を必要とする課題である。
本稿では,イベント関連論理の理解と適用におけるLLMの能力について,詳細な調査を行う。
本研究により,LLMは論理的に一貫した推論子ではないことが明らかとなった。
論文 参考訳(メタデータ) (2023-10-13T14:53:06Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。