論文の概要: Agent-Based Genetic Algorithm for Crypto Trading Strategy Optimization
- arxiv url: http://arxiv.org/abs/2510.07943v1
- Date: Thu, 09 Oct 2025 08:41:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-10 17:54:14.960566
- Title: Agent-Based Genetic Algorithm for Crypto Trading Strategy Optimization
- Title(参考訳): 暗号取引戦略最適化のためのエージェントベース遺伝的アルゴリズム
- Authors: Qiushi Tian, Churong Liang, Kairan Hong, Runnan Li,
- Abstract要約: Cypto Genetic Algorithm Agent (CGA-Agent)は、遺伝的アルゴリズムとインテリジェントなマルチエージェント調整機構を統合する先駆的なハイブリッドフレームワークである。
CGA-Agentはリアルタイム市場マイクロ構造インテリジェンスと適応戦略パフォーマンスフィードバックを組み込んでいる。
3つの暗号通貨の総合的な経験的評価は、総リターンとリスク調整されたメトリクスの両方において、体系的および統計的に重要なパフォーマンス改善を示す。
- 参考スコア(独自算出の注目度): 1.0791267046450075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cryptocurrency markets present formidable challenges for trading strategy optimization due to extreme volatility, non-stationary dynamics, and complex microstructure patterns that render conventional parameter optimization methods fundamentally inadequate. We introduce Cypto Genetic Algorithm Agent (CGA-Agent), a pioneering hybrid framework that synergistically integrates genetic algorithms with intelligent multi-agent coordination mechanisms for adaptive trading strategy parameter optimization in dynamic financial environments. The framework uniquely incorporates real-time market microstructure intelligence and adaptive strategy performance feedback through intelligent mechanisms that dynamically guide evolutionary processes, transcending the limitations of static optimization approaches. Comprehensive empirical evaluation across three cryptocurrencies demonstrates systematic and statistically significant performance improvements on both total returns and risk-adjusted metrics.
- Abstract(参考訳): 暗号通貨市場は、極端なボラティリティ、非定常力学、および従来のパラメータ最適化手法を根本的に不適切なものにする複雑なマイクロ構造パターンにより、トレーディング戦略最適化の重大な課題を提示している。
我々はCypto Genetic Algorithm Agent (CGA-Agent)を導入した。Cypto Genetic Algorithm Agent(CGA-Agent)は、動的金融環境における適応的トレーディング戦略パラメータ最適化のための知的マルチエージェント調整機構と遺伝的アルゴリズムを相乗的に統合する、先駆的なハイブリッドフレームワークである。
このフレームワークは、進化過程を動的に導くインテリジェントなメカニズムを通じて、リアルタイム市場マイクロ構造インテリジェンスと適応戦略パフォーマンスフィードバックを組み込んでおり、静的最適化アプローチの限界を超越している。
3つの暗号通貨の総合的な経験的評価は、総リターンとリスク調整されたメトリクスの両方において、体系的および統計的に重要なパフォーマンス改善を示す。
関連論文リスト
- RAG/LLM Augmented Switching Driven Polymorphic Metaheuristic Framework [5.10888539576355]
Polymorphic Metaheuristic Framework (PMF) は、リアルタイムパフォーマンスフィードバックと動的アルゴリズム選択によって駆動される自己適応型メタヒューリスティックスイッチング機構である。
AIによる意思決定と自己修正メカニズムを統合することで、PMFはスケーラブルでインテリジェントで自律的な最適化フレームワークの道を開いた。
論文 参考訳(メタデータ) (2025-05-20T01:41:22Z) - RL-finetuning LLMs from on- and off-policy data with a single algorithm [53.70731390624718]
大規模言語モデルを微調整するための新しい強化学習アルゴリズム(AGRO)を提案する。
AGROは生成整合性の概念を利用しており、最適ポリシーはモデルの任意の世代間での整合性の概念を満たすと述べている。
サンプルベースの政策勾配による最適解を求めるアルゴリズムを導出し,その収束に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2025-03-25T12:52:38Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
本稿では,SOMMOP(Single-Objective Multi-Modal Optimization)とMOO(Multi-Objective Optimization)の両方に焦点を当てる。
SOMMOPではニッチ技術とカオス進化を統合し,ガウス突然変異を併用したパーシスタンス・クラスタリングを行った。
MOOでは,これらの手法を不確実性に基づく選択,適応的チューニングを組み込んだ包括的フレームワークに拡張し,決定論的群集に半径(R)の概念を導入する。
論文 参考訳(メタデータ) (2024-11-12T15:18:48Z) - Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
本稿では,動的な金融市場における非マルコフ的最適実行戦略の学習に挑戦する。
我々は,Deep Deterministic Policy Gradient(DDPG)に基づく新しいアクター批判アルゴリズムを提案する。
提案アルゴリズムは最適実行戦略の近似に成功していることを示す。
論文 参考訳(メタデータ) (2024-10-17T12:38:08Z) - Large Language Model Aided Multi-objective Evolutionary Algorithm: a Low-cost Adaptive Approach [4.442101733807905]
本研究では,大規模言語モデル(LLM)と従来の進化的アルゴリズムを組み合わせることで,アルゴリズムの探索能力と一般化性能を向上させる新しいフレームワークを提案する。
適応機構内の補助的評価関数と自動的プロンプト構築を活用し, LLM の利用を柔軟に調整する。
論文 参考訳(メタデータ) (2024-10-03T08:37:02Z) - Statistical arbitrage in multi-pair trading strategy based on graph clustering algorithms in US equities market [0.0]
本研究は,グラフクラスタリングアルゴリズムに基づく統計仲裁の新しい枠組みに基づく効果的な戦略の開発を目指す。
この研究は、最適な信号検出とリスク管理のための統合的なアプローチを提供することを目指している。
論文 参考訳(メタデータ) (2024-06-15T17:25:32Z) - An Invariant Information Geometric Method for High-Dimensional Online
Optimization [9.538618632613714]
本稿では,対応するフレームワークから派生した,完全な不変性指向進化戦略アルゴリズムを提案する。
ベイズ最適化と進化戦略における主要なアルゴリズムに対してSynCMAをベンチマークする。
あらゆるシナリオにおいて、SynCMAはサンプル効率において他のアルゴリズムよりも優れた能力を示す。
論文 参考訳(メタデータ) (2024-01-03T07:06:26Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - Mixed Strategies for Robust Optimization of Unknown Objectives [93.8672371143881]
そこでは,不確実なパラメータの最悪の実現に対して,未知の目的関数を最適化することを目的として,ロバストな最適化問題を考察する。
我々は,未知の目的をノイズ点評価から逐次学習する,新しいサンプル効率アルゴリズムGP-MROを設計する。
GP-MROは、最悪のケースで期待される目標値を最大化する、堅牢でランダムな混合戦略の発見を目指している。
論文 参考訳(メタデータ) (2020-02-28T09:28:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。