論文の概要: DemandCast: Global hourly electricity demand forecasting
- arxiv url: http://arxiv.org/abs/2510.08000v1
- Date: Thu, 09 Oct 2025 09:39:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-10 17:54:14.988669
- Title: DemandCast: Global hourly electricity demand forecasting
- Title(参考訳): 世界の時給電力需要予測:「デマンドCast」
- Authors: Kevin Steijn, Vamsi Priya Goli, Enrico Antonini,
- Abstract要約: このモデルは、過去の電力需要と包括的な気象と社会経済の変数を統合し、正規化された電力需要プロファイルを予測する。
我々のアプローチは正確でスケーラブルな需要予測を提供し、エネルギーシステムプランナーや政策立案者に貴重な洞察を与えます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a machine learning framework for electricity demand forecasting across diverse geographical regions using the gradient boosting algorithm XGBoost. The model integrates historical electricity demand and comprehensive weather and socioeconomic variables to predict normalized electricity demand profiles. To enable robust training and evaluation, we developed a large-scale dataset spanning multiple years and countries, applying a temporal data-splitting strategy that ensures benchmarking of out-of-sample performance. Our approach delivers accurate and scalable demand forecasts, providing valuable insights for energy system planners and policymakers as they navigate the challenges of the global energy transition.
- Abstract(参考訳): 本稿では,勾配向上アルゴリズムXGBoostを用いて,多様な地域にわたって電力需要予測を行う機械学習フレームワークを提案する。
このモデルは、過去の電力需要と包括的な気象と社会経済の変数を統合し、正規化された電力需要プロファイルを予測する。
堅牢なトレーニングと評価を実現するため,複数年,国にまたがる大規模データセットを開発し,サンプル外性能のベンチマークを保証するための時間的データ分割戦略を適用した。
我々のアプローチは正確でスケーラブルな需要予測を提供し、グローバルなエネルギー移行の課題をナビゲートするエネルギーシステムプランナーや政策立案者に貴重な洞察を提供する。
関連論文リスト
- Ultra-short-term solar power forecasting by deep learning and data reconstruction [60.200987006598524]
深層学習に基づく超短周期太陽エネルギー予測とデータ再構成を提案する。
我々は、ターゲット予測期間に対する長期的および短期的依存関係をキャプチャするために、ディープラーニングモデルを用いる。
論文 参考訳(メタデータ) (2025-09-21T14:22:35Z) - Leveraging External Factors in Household-Level Electrical Consumption Forecasting using Hypernetworks [15.77742422761257]
ハイパーネットワークアーキテクチャは,グローバルな電力消費予測モデルの精度を高めるために外部要因を活用することができることを示す。
約2年間にわたる包括的データセットを収集し,6000戸以上のルクセンブルク人世帯の消費データを収集した。
論文 参考訳(メタデータ) (2025-06-17T12:35:24Z) - Short-Term Power Demand Forecasting for Diverse Consumer Types to Enhance Grid Planning and Synchronisation [0.0]
本研究は, 産業, 商業, 住宅消費者の差別化による正確な予測の必要性に対処するものである。
短時間負荷予測(STLF)と短時間負荷予測(VSTLF)のためのAIおよび機械学習アルゴリズムを探索し比較した。
論文 参考訳(メタデータ) (2025-06-04T12:01:11Z) - OneForecast: A Universal Framework for Global and Regional Weather Forecasting [67.61381313555091]
本稿では,グラフニューラルネットワークに基づくグローバルなネスト型気象予報フレームワーク(OneForecast)を提案する。
動的システムパースペクティブとマルチグリッド理論を組み合わせることで,マルチスケールグラフ構造を構築し,対象領域を密度化する。
動的ゲーティングユニットを用いた適応型メッセージング機構を導入し,ノードとエッジ機能を深く統合し,より正確なイベント予測を行う。
論文 参考訳(メタデータ) (2025-02-01T06:49:16Z) - From Dense to Sparse: Event Response for Enhanced Residential Load Forecasting [48.22398304557558]
住宅負荷予測のためのイベント応答型知識ガイド手法(ERKG)を提案する。
ERKGは、異なる家電の電力使用状況の推定、負荷系列からのイベント関連スパース知識のマイニングを取り入れている。
論文 参考訳(メタデータ) (2025-01-06T05:53:38Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - AI-Powered Predictions for Electricity Load in Prosumer Communities [0.0]
本稿では,人工知能を用いた短期負荷予測手法を提案する。
その結果、(負荷予測タスクに適応した)持続的項と回帰的項の組み合わせは、最高の予測精度が得られることがわかった。
論文 参考訳(メタデータ) (2024-02-21T12:23:09Z) - The Forecastability of Underlying Building Electricity Demand from Time
Series Data [1.3757257689932039]
ビルのエネルギー消費予測は、ビルのエネルギー管理システムにおいて有望な解決策となっている。
建物の将来的なエネルギー需要を予測するデータ駆動のアプローチは、科学文献で見ることができる。
このような建物のエネルギー需要を予測するために利用できる最も正確な予測モデルの同定は依然として困難である。
論文 参考訳(メタデータ) (2023-11-29T20:47:47Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Machine learning applications for electricity market agent-based models:
A systematic literature review [68.8204255655161]
エージェントベースのシミュレーションは、電気市場のダイナミクスをよりよく理解するために使用される。
エージェントベースのモデルは、機械学習と人工知能を統合する機会を提供する。
我々は、エージェントベースの電気市場モデルに適用された機械学習に焦点を当てた2016年から2021年の間に発行された55の論文をレビューする。
論文 参考訳(メタデータ) (2022-06-05T14:52:26Z) - Deep generative modeling for probabilistic forecasting in power systems [34.70329820717658]
本研究では,近年のディープラーニング技術である正規化フローを用いて,正確な確率予測を行う。
我々の方法論は他の最先端のディープラーニング生成モデルと競合していることを示す。
論文 参考訳(メタデータ) (2021-06-17T10:41:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。