論文の概要: Reproducible Evaluation of Data Augmentation and Loss Functions for Brain Tumor Segmentation
- arxiv url: http://arxiv.org/abs/2510.08617v1
- Date: Wed, 08 Oct 2025 06:15:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 00:38:47.203229
- Title: Reproducible Evaluation of Data Augmentation and Loss Functions for Brain Tumor Segmentation
- Title(参考訳): 脳腫瘍切除におけるデータ拡張とロス関数の再現性評価
- Authors: Saumya B,
- Abstract要約: 本研究は脳腫瘍MRIにおけるU-Netセグメンテーション性能の再現性評価を焦点損失と基本データ拡張戦略を用いて行った。
焦点損失のあるU-Netは、最先端の結果に匹敵する90%の精度を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain tumor segmentation is crucial for diagnosis and treatment planning, yet challenges such as class imbalance and limited model generalization continue to hinder progress. This work presents a reproducible evaluation of U-Net segmentation performance on brain tumor MRI using focal loss and basic data augmentation strategies. Experiments were conducted on a publicly available MRI dataset, focusing on focal loss parameter tuning and assessing the impact of three data augmentation techniques: horizontal flip, rotation, and scaling. The U-Net with focal loss achieved a precision of 90%, comparable to state-of-the-art results. By making all code and results publicly available, this study establishes a transparent, reproducible baseline to guide future research on augmentation strategies and loss function design in brain tumor segmentation.
- Abstract(参考訳): 脳腫瘍のセグメンテーションは診断と治療計画に不可欠であるが、クラス不均衡や限定モデル一般化といった課題は進歩を妨げ続けている。
本研究は脳腫瘍MRIにおけるU-Netセグメンテーション性能の再現性評価を焦点損失と基本データ拡張戦略を用いて行った。
実験は、焦点損失パラメータチューニングと水平フリップ、回転、スケーリングの3つのデータ拡張テクニックの影響評価に焦点を当てた、公開可能なMRIデータセット上で実施された。
焦点損失のあるU-Netは、最先端の結果に匹敵する90%の精度を達成した。
本研究は,すべてのコードと結果を公開することにより,脳腫瘍セグメンテーションにおける拡張戦略と損失関数設計の今後の研究を導くために,透明で再現可能なベースラインを確立する。
関連論文リスト
- The Brain Resection Multimodal Image Registration (ReMIND2Reg) 2025 Challenge [42.51640997446028]
ReMIND2Reg 2025 Challengeは、ReMINDデータセットに基づいて構築された、このタスクのための最大の公開ベンチマークを提供する。
99のトレーニングケース、5のバリデーションケース、10のプライベートテストケースがペアの3D ceT1 MRI、T2 MRI、そして術後3D iUSボリュームで構成されている。
データはトレーニングのためのアノテーションなしで提供され、検証とテストのパフォーマンスは手動で注釈付けされた解剖学的ランドマークで評価される。
論文 参考訳(メタデータ) (2025-08-13T09:31:06Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Fully Automated Tumor Segmentation for Brain MRI data using Multiplanner
UNet [0.29998889086656577]
本研究は,3つの挑戦的データセットにまたがる腫瘍サブリージョンの分割におけるマルチプランナーU-Net(MPUnet)アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2024-01-12T10:46:19Z) - Brain Tumor Segmentation Based on Deep Learning, Attention Mechanisms, and Energy-Based Uncertainty Prediction [0.0]
脳腫瘍は、死亡率80%を超える最も致命的ながんの1つである。
医学的分析では、脳腫瘍の手動アノテーションとセグメンテーションは複雑な作業である。
本稿では,データ前処理中に実装された関心領域検出アルゴリズムを提案する。
ソフトアテンションを持つ完全畳み込みオートエンコーダは、異なる脳MRIをセグメント化する。
論文 参考訳(メタデータ) (2023-12-31T20:42:52Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Automated Ensemble-Based Segmentation of Adult Brain Tumors: A Novel
Approach Using the BraTS AFRICA Challenge Data [0.0]
3つのコアアーキテクチャに基づく11種類のユニークなバリエーションからなるアンサンブル手法を提案する。
その結果,異なるアーキテクチャを組み合わせるアンサンブルアプローチが単一モデルより優れていることがわかった。
これらの結果は、脳腫瘍を正確に分類する上での、調整された深層学習技術の可能性を裏付けるものである。
論文 参考訳(メタデータ) (2023-08-14T15:34:22Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - MRI brain tumor segmentation and uncertainty estimation using 3D-UNet
architectures [0.0]
本研究では、メモリ消費を低減し、アンバランスデータの影響を低減するためにパッチベースの技術で訓練された3Dエンコーダデコーダアーキテクチャを検討する。
また,テストタイム・ドロップアウト (TTD) とデータ拡張 (TTA) を用いて, てんかん, てんかんともにボキセル関連不確実性情報を導入する。
この研究で提案されたモデルと不確実性推定測定は、腫瘍の分割と不確実性推定に関するタスク1および3のBraTS'20チャレンジで使用されています。
論文 参考訳(メタデータ) (2020-12-30T19:28:53Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
本研究では, 異常セグメンテーション性能の向上と, ネイティブ解像度で入力データのより鮮明な再構成を行う汎用能力を示す。
ラプラシアンピラミッドのモデリングにより、複数のスケールで病変のデライン化と集約が可能になる。
論文 参考訳(メタデータ) (2020-06-23T09:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。