論文の概要: SQS: Bayesian DNN Compression through Sparse Quantized Sub-distributions
- arxiv url: http://arxiv.org/abs/2510.08999v1
- Date: Fri, 10 Oct 2025 04:54:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 00:38:48.113434
- Title: SQS: Bayesian DNN Compression through Sparse Quantized Sub-distributions
- Title(参考訳): SQS: Sparse Quantized Sub-distributionsによるベイジアンDNN圧縮
- Authors: Ziyi Wang, Nan Jiang, Guang Lin, Qifan Song,
- Abstract要約: ベイズ変分学習(SQS)による同時プルーニングと低ビット量子化のための統合フレームワークを提案する。
理論的には、スパースで量子化されたディープニューラルネットワークに対する我々の提案した変分アプローチの一貫性のある結果を提供する。
- 参考スコア(独自算出の注目度): 18.749300190253624
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compressing large-scale neural networks is essential for deploying models on resource-constrained devices. Most existing methods adopt weight pruning or low-bit quantization individually, often resulting in suboptimal compression rates to preserve acceptable performance drops. We introduce a unified framework for simultaneous pruning and low-bit quantization via Bayesian variational learning (SQS), which achieves higher compression rates than prior baselines while maintaining comparable performance. The key idea is to employ a spike-and-slab prior to inducing sparsity and model quantized weights using Gaussian Mixture Models (GMMs) to enable low-bit precision. In theory, we provide the consistent result of our proposed variational approach to a sparse and quantized deep neural network. Extensive experiments on compressing ResNet, BERT-base, Llama3, and Qwen2.5 models show that our method achieves higher compression rates than a line of existing methods with comparable performance drops.
- Abstract(参考訳): リソース制約のあるデバイスにモデルをデプロイするには、大規模なニューラルネットワークの圧縮が不可欠である。
既存のほとんどの手法は重み付けや低ビット量子化を個別に採用しており、しばしば許容される性能低下を維持するために最適以下の圧縮率をもたらす。
本稿では,ベイズ変分学習(SQS)による同時プルーニングと低ビット量子化のための統一的なフレームワークを提案する。
鍵となるアイデアは、低ビット精度を実現するためにガウス混合モデル (GMM) を用いて、スパーシリティを誘導する前にスパイク・アンド・スラブを使用することである。
理論的には、スパースで量子化されたディープニューラルネットワークに対する我々の提案した変分アプローチの一貫性のある結果を提供する。
ResNet, BERT-base, Llama3, Qwen2.5モデルの圧縮実験により, 本手法は, 性能低下に匹敵する既存手法よりも高い圧縮率を達成することを示す。
関連論文リスト
- Integrating Pruning with Quantization for Efficient Deep Neural Networks Compression [0.0]
プルーニングと量子化は、モデルのサイズを減らし、処理速度を向上させるために広く使われている圧縮技術である。
本稿では,類似性に基づくフィルタプルーニングとアダプティブ・パワー・オブ・ツー(APoT)量子化を統合し,高い圧縮効率を実現する2つの手法を提案する。
実験により,提案手法は精度の低下を最小限に抑え,効率的なモデル圧縮を実現することを示す。
論文 参考訳(メタデータ) (2025-09-04T14:17:28Z) - Reducing Storage of Pretrained Neural Networks by Rate-Constrained Quantization and Entropy Coding [56.066799081747845]
成長を続けるニューラルネットワークのサイズは、リソースに制約のあるデバイスに深刻な課題をもたらす。
本稿では,レートアウェア量子化とエントロピー符号化を組み合わせた学習後圧縮フレームワークを提案する。
この方法では非常に高速な復号化が可能であり、任意の量子化グリッドと互換性がある。
論文 参考訳(メタデータ) (2025-05-24T15:52:49Z) - Retraining-free Model Quantization via One-Shot Weight-Coupling Learning [41.299675080384]
混合精度量子化(MPQ)は、層に不均一なビット幅を割り当てることで、モデルを効果的に圧縮することを提唱する。
MPQは典型的には、探索訓練された2段階のプロセスに編成される。
本稿では,混合精度モデル圧縮のためのワンショットトレーニング探索パラダイムを考案する。
論文 参考訳(メタデータ) (2024-01-03T05:26:57Z) - Quantization Aware Factorization for Deep Neural Network Compression [20.04951101799232]
畳み込み層と完全連結層の分解は、ニューラルネットワークにおけるパラメータとFLOPを減らす効果的な方法である。
従来のトレーニング後量子化手法は重み付きネットワークに適用され、精度が低下する。
これは、分解された近似を量子化因子で直接発見するアルゴリズムを開発する動機となった。
論文 参考訳(メタデータ) (2023-08-08T21:38:02Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - OPQ: Compressing Deep Neural Networks with One-shot Pruning-Quantization [32.60139548889592]
本稿では,新しいワンショットプルーニング量子化(OPQ)を提案する。
OPQは、事前訓練された重みパラメータのみによる圧縮割り当てを解析的に解決する。
本稿では,共通コードブックを共有するために各レイヤの全チャネルを強制する,統一的なチャネルワイド量子化手法を提案する。
論文 参考訳(メタデータ) (2022-05-23T09:05:25Z) - BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network
Quantization [32.770842274996774]
混合精度量子化は、ディープニューラルネットワークの性能と圧縮率の最適なトレードオフを実現できる可能性がある。
従来の方法は、小さな手作業で設計された検索空間のみを調べるか、面倒なニューラルネットワークアーキテクチャ検索を使用して広大な検索空間を探索する。
本研究では、ビットレベルスパーシティを誘導する新たな角度から、混合精度量子化に取り組むためのビットレベルスパーシティ量子化(BSQ)を提案する。
論文 参考訳(メタデータ) (2021-02-20T22:37:41Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) は閾値に基づくスペーシフィケーションスキームであり、DGCと同等のしきい値推定品質を享受する。
SIDCoは,非圧縮ベースライン,Topk,DGC圧縮機と比較して,最大で41:7%,7:6%,1:9%の速度でトレーニングを高速化する。
論文 参考訳(メタデータ) (2021-01-26T13:06:00Z) - Training with Quantization Noise for Extreme Model Compression [57.51832088938618]
与えられたモデルサイズに対する精度を最大化しながら、コンパクトなモデルを作成するという問題に取り組む。
標準的な解決策は、トレーニング中に重みが定量化され、勾配がストレート・スルー推定器に近似される量子化意識訓練(Quantization Aware Training)でネットワークをトレーニングすることである。
本稿では, この手法を, 極端な圧縮法を用いて, int8 の固定点量子化を超えて機能するように拡張する。
論文 参考訳(メタデータ) (2020-04-15T20:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。