論文の概要: Performance of Machine Learning Methods for Gravity Inversion: Successes and Challenges
- arxiv url: http://arxiv.org/abs/2510.09632v1
- Date: Sun, 28 Sep 2025 19:19:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 05:23:07.14504
- Title: Performance of Machine Learning Methods for Gravity Inversion: Successes and Challenges
- Title(参考訳): 重力インバージョンのための機械学習手法の性能:成功と挑戦
- Authors: Vahid Negahdari, Shirin Samadi Bahrami, Seyed Reza Moghadasi, Mohammad Reza Razvan,
- Abstract要約: 機械学習の最近の進歩は、重力反転のためのデータ駆動アプローチを動機付けている。
まず、重力異常を直接密度場にマッピングするように訓練された畳み込みニューラルネットワークを設計する。
生成モデルをさらに研究するために,変分オートエンコーダ(VAE)とGAN(Generative Adversarial Networks)を用いる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Gravity inversion is the problem of estimating subsurface density distributions from observed gravitational field data. We consider the two-dimensional (2D) case, in which recovering density models from one-dimensional (1D) measurements leads to an underdetermined system with substantially more model parameters than measurements, making the inversion ill-posed and non-unique. Recent advances in machine learning have motivated data-driven approaches for gravity inversion. We first design a convolutional neural network (CNN) trained to directly map gravity anomalies to density fields, where a customized data structure is introduced to enhance the inversion performance. To further investigate generative modeling, we employ Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs), reformulating inversion as a latent-space optimization constrained by the forward operator. In addition, we assess whether classical iterative solvers such as Gradient Descent (GD), GMRES, LGMRES, and a recently proposed Improved Conjugate Gradient (ICG) method can refine CNN-based initial guesses and improve inversion accuracy. Our results demonstrate that CNN inversion not only provides the most reliable reconstructions but also significantly outperforms previously reported methods. Generative models remain promising but unstable, and iterative solvers offer only marginal improvements, underscoring the persistent ill-posedness of gravity inversion.
- Abstract(参考訳): 重力インバージョンは、観測された重力場データから地下密度分布を推定する問題である。
1次元(1次元)測定から密度モデルを復元する2次元(2次元)の場合、測定値よりもかなり多くのモデルパラメータを持つ下決定系が導出され、逆転が不均一になる。
機械学習の最近の進歩は、重力反転のためのデータ駆動アプローチを動機付けている。
我々はまず、重力異常を直接密度場にマッピングするように訓練された畳み込みニューラルネットワーク(CNN)を設計する。
生成モデルをさらに検討するため,変分オートエンコーダ (VAE) とGAN (Generative Adversarial Networks) を用いて,フォワード演算子によって制約される遅延空間最適化の逆変換を行う。
さらに,近年提案されている改良共役勾配法(ICG)は,CNNに基づく初期推定を改良し,インバージョン精度を向上させることができるかを検討した。
以上の結果から,CNNの逆変換は信頼性の高い再構成を提供するだけでなく,従来報告した手法よりも優れていたことが示唆された。
生成モデルはまだ有望だが不安定であり、反復解法は限界的な改善しか提供せず、重力逆転の持続的不正さを暗示している。
関連論文リスト
- Generative Model Inversion Through the Lens of the Manifold Hypothesis [98.37040155914595]
モデル反転攻撃(MIA)は、訓練されたモデルからクラス表現型サンプルを再構成することを目的としている。
最近の生成的MIAは、生成的敵ネットワークを使用して、反転過程を導く画像の事前学習を行う。
論文 参考訳(メタデータ) (2025-09-24T14:39:25Z) - Weight Spectra Induced Efficient Model Adaptation [54.8615621415845]
微調整された大規模な基礎モデルは、計算コストを禁ずる。
微調整が最上位特異値を大きく増幅する一方で,残りはほとんど無傷であることを示す。
本稿では,トップ特異方向の学習可能な再スケーリングを利用する新しい手法を提案する。
論文 参考訳(メタデータ) (2025-05-29T05:03:29Z) - Gradient Inversion Transcript: Leveraging Robust Generative Priors to Reconstruct Training Data from Gradient Leakage [3.012404329139943]
Gradient Inversion Transcript (GIT) は、リークした勾配からトレーニングデータを再構成するための新しい生成手法である。
GITは、既存のメソッドを複数のデータセットで一貫して上回る。
論文 参考訳(メタデータ) (2025-05-26T14:17:00Z) - Restoration Score Distillation: From Corrupted Diffusion Pretraining to One-Step High-Quality Generation [82.39763984380625]
Score Distillation (DSD) の原理的一般化である textitRestoration Score Distillation (RSD) を提案する。
RSDは、ぼやけた画像、不完全画像、低解像度画像など、広範囲の汚職タイプに対応している。
自然と科学の両方のデータセットの様々な復元作業において、教師モデルを一貫して上回っている。
論文 参考訳(メタデータ) (2025-05-19T17:21:03Z) - Mean flow data assimilation using physics-constrained Graph Neural Networks [0.0]
本研究では,グラフニューラルネットワーク(GNN)と最適化手法を統合し,平均流路復元の精度を高める新しいデータ同化手法を提案する。
GNNフレームワークは非構造化データを扱うのに適しており、計算流体力学(CFD)で遭遇する複雑な測地に共通している。
その結果,データ駆動モデルに類似するモデルと比較して,訓練データに制限がある場合でも,平均フロー再構成の精度は著しく向上した。
論文 参考訳(メタデータ) (2024-11-14T14:31:52Z) - Subsurface Characterization using Ensemble-based Approaches with Deep
Generative Models [2.184775414778289]
逆モデリングは、計算コストとスパースデータセットによる予測精度の低下により、不適切な高次元アプリケーションに限られる。
Wasserstein Geneversarative Adrial Network と Gradient Penalty (WGAN-GP) と Ensemble Smoother を多重データ同化 (ES-MDA) と組み合わせる。
WGAN-GPは低次元の潜伏空間から高次元K場を生成するために訓練され、ES-MDAは利用可能な測定値を同化することにより潜伏変数を更新する。
論文 参考訳(メタデータ) (2023-10-02T01:27:10Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Low-rank Tensor Assisted K-space Generative Model for Parallel Imaging
Reconstruction [14.438899814473446]
並列画像再構成のための低ランクテンソル支援k空間生成モデル(LR-KGM)を提案する。
これは、学習のための元の事前情報を高次元の事前情報に変換することを意味する。
実験により, LR-KGM法は高い性能を示した。
論文 参考訳(メタデータ) (2022-12-11T13:34:43Z) - Generative models and Bayesian inversion using Laplace approximation [0.3670422696827525]
近年, 生成モデルを用いて高情報化の先行問題として逆問題の解法が提案されている。
導出ベイズ推定は、生成モデルの低次元多様体を用いたアプローチとは対照的に、一貫したものであることを示す。
論文 参考訳(メタデータ) (2022-03-15T10:05:43Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。