論文の概要: Rounding-Guided Backdoor Injection in Deep Learning Model Quantization
- arxiv url: http://arxiv.org/abs/2510.09647v1
- Date: Sun, 05 Oct 2025 15:45:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:29.51522
- Title: Rounding-Guided Backdoor Injection in Deep Learning Model Quantization
- Title(参考訳): 深層学習モデル量子化におけるラウンドガイド型バックドアインジェクション
- Authors: Xiangxiang Chen, Peixin Zhang, Jun Sun, Wenhai Wang, Jingyi Wang,
- Abstract要約: 我々は、モデル量子化を利用して悪意ある振る舞いを埋め込む新しいバックドア攻撃QuRAを提案する。
本研究は,広く用いられているモデル量子化プロセスにおける重要な脆弱性を明らかにする。
- 参考スコア(独自算出の注目度): 30.404468752826986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model quantization is a popular technique for deploying deep learning models on resource-constrained environments. However, it may also introduce previously overlooked security risks. In this work, we present QuRA, a novel backdoor attack that exploits model quantization to embed malicious behaviors. Unlike conventional backdoor attacks relying on training data poisoning or model training manipulation, QuRA solely works using the quantization operations. In particular, QuRA first employs a novel weight selection strategy to identify critical weights that influence the backdoor target (with the goal of perserving the model's overall performance in mind). Then, by optimizing the rounding direction of these weights, we amplify the backdoor effect across model layers without degrading accuracy. Extensive experiments demonstrate that QuRA achieves nearly 100% attack success rates in most cases, with negligible performance degradation. Furthermore, we show that QuRA can adapt to bypass existing backdoor defenses, underscoring its threat potential. Our findings highlight critical vulnerability in widely used model quantization process, emphasizing the need for more robust security measures. Our implementation is available at https://github.com/cxx122/QuRA.
- Abstract(参考訳): モデル量子化は、リソース制約のある環境にディープラーニングモデルをデプロイする一般的なテクニックである。
しかし、これまで見過ごされていたセキュリティリスクも導入される可能性がある。
本研究では、モデル量子化を利用して悪意ある振る舞いを埋め込む新しいバックドア攻撃QuRAを提案する。
トレーニングデータ中毒やモデルトレーニング操作に依存する従来のバックドア攻撃とは異なり、QuRAは量子化操作のみを使用して動作する。
特に、QuRAは、(モデル全体のパフォーマンスを念頭に置いて)バックドアターゲットに影響を与える重要な重量を特定するために、新しいウェイト選択戦略を採用している。
そして, これらの重みの丸め方向を最適化することにより, モデル層間のバックドア効果を精度を低下させることなく増幅する。
大規模な実験では、QuRAはほとんどの場合100%の攻撃成功率を達成でき、性能劣化は無視できる。
さらに,QuRAは既存のバックドア防御を回避し,脅威の可能性を強調できることを示す。
我々の発見は、広く使われているモデル量子化プロセスにおける重大な脆弱性を強調し、より堅牢なセキュリティ対策の必要性を強調した。
私たちの実装はhttps://github.com/cxx122/QuRAで公開されています。
関連論文リスト
- MARS: A Malignity-Aware Backdoor Defense in Federated Learning [51.77354308287098]
最近提案されたSOTA攻撃(3DFed)は、ディフェンダーがバックドアモデルを受け入れたかどうかを判断するためにインジケータ機構を使用する。
本稿では,各ニューロンの有害な範囲を示すためにバックドアエネルギーを利用するMARS(Maignity-Aware backdooR defenSe)を提案する。
実験により、MARSはSOTAのバックドア攻撃に対して防御でき、既存の防御を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2025-09-21T14:50:02Z) - Behavior Backdoor for Deep Learning Models [95.50787731231063]
我々は,行動訓練されたバックドアモデルトレーニング手順として定義された行動バックドアアタックに向けた第一歩を踏み出す。
本稿では,行動バックドアを実装する最初のパイプライン,すなわち量子バックドア(QB)攻撃を提案する。
さまざまなモデル、データセット、タスクで実験が行われ、この新たなバックドア攻撃の有効性が実証された。
論文 参考訳(メタデータ) (2024-12-02T10:54:02Z) - Uncovering, Explaining, and Mitigating the Superficial Safety of Backdoor Defense [27.471096446155933]
現行のバックドア浄化法における精製後ロバスト性について検討した。
現在の安全浄化法は, バックドア行動の迅速な再学習に弱いことが判明した。
モデル更新を伴うバックドア接続経路の偏差を緩和するチューニングディフェンス,Path-Aware Minimization (PAM)を提案する。
論文 参考訳(メタデータ) (2024-10-13T13:37:36Z) - Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - Mitigating Backdoor Attacks using Activation-Guided Model Editing [8.00994004466919]
バックドア攻撃は、機械学習モデルの完全性と信頼性を損なう。
本研究では,そのようなバックドア攻撃に対抗するために,機械学習による新たなバックドア緩和手法を提案する。
論文 参考訳(メタデータ) (2024-07-10T13:43:47Z) - TrojFM: Resource-efficient Backdoor Attacks against Very Large Foundation Models [69.37990698561299]
TrojFMは、非常に大きな基礎モデルに適した、新しいバックドア攻撃である。
提案手法では,モデルパラメータのごく一部のみを微調整することでバックドアを注入する。
広範に使われている大規模GPTモデルに対して,TrojFMが効果的なバックドアアタックを起動できることを実証する。
論文 参考訳(メタデータ) (2024-05-27T03:10:57Z) - Shared Adversarial Unlearning: Backdoor Mitigation by Unlearning Shared
Adversarial Examples [67.66153875643964]
バックドア攻撃は、機械学習モデルに対する深刻なセキュリティ脅威である。
本稿では,小さなクリーンデータセットを用いて,バックドアモデルの浄化作業について検討する。
バックドアリスクと敵的リスクの関連性を確立することにより、バックドアリスクに対する新たな上限を導出する。
論文 参考訳(メタデータ) (2023-07-20T03:56:04Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
本稿では,モデル構造の角度からバックドア機構を探索する。
攻撃成功率 (ASR) は, キースキップ接続の出力を減少させると著しく低下することを示した。
論文 参考訳(メタデータ) (2022-11-02T15:39:19Z) - RIBAC: Towards Robust and Imperceptible Backdoor Attack against Compact
DNN [28.94653593443991]
近年のバックドア攻撃は、ディープニューラルネットワーク(DNN)モデルのセキュリティに対する新たな脅威となっている。
本稿では,コンパクトDNNモデル(RIBAC)に対するロバストおよび非受容性バックドアアタックの研究と開発について述べる。
論文 参考訳(メタデータ) (2022-08-22T21:27:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。