論文の概要: SpectralCA: Bi-Directional Cross-Attention for Next-Generation UAV Hyperspectral Vision
- arxiv url: http://arxiv.org/abs/2510.09912v1
- Date: Fri, 10 Oct 2025 22:53:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:29.688327
- Title: SpectralCA: Bi-Directional Cross-Attention for Next-Generation UAV Hyperspectral Vision
- Title(参考訳): SpectralCA:次世代UAVハイパースペクトルビジョンのための双方向クロスアテンション
- Authors: D. V. Brovko,
- Abstract要約: この研究の関連性は、複雑な環境で確実に運用できる無人航空機の需要の増加にある。
ハイパースペクトルイメージング(HSI)は、UAVベースのコンピュータビジョンにユニークな機会を提供する。
本研究の目的は、航法、物体検出、地形分類のためのUAV知覚にHSIを組み込んだディープラーニングアーキテクチャを開発することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The relevance of this research lies in the growing demand for unmanned aerial vehicles (UAVs) capable of operating reliably in complex environments where conventional navigation becomes unreliable due to interference, poor visibility, or camouflage. Hyperspectral imaging (HSI) provides unique opportunities for UAV-based computer vision by enabling fine-grained material recognition and object differentiation, which are critical for navigation, surveillance, agriculture, and environmental monitoring. The aim of this work is to develop a deep learning architecture integrating HSI into UAV perception for navigation, object detection, and terrain classification. Objectives include: reviewing existing HSI methods, designing a hybrid 2D/3D convolutional architecture with spectral-spatial cross-attention, training, and benchmarking. The methodology is based on the modification of the Mobile 3D Vision Transformer (MDvT) by introducing the proposed SpectralCA block. This block employs bi-directional cross-attention to fuse spectral and spatial features, enhancing accuracy while reducing parameters and inference time. Experimental evaluation was conducted on the WHU-Hi-HongHu dataset, with results assessed using Overall Accuracy, Average Accuracy, and the Kappa coefficient. The findings confirm that the proposed architecture improves UAV perception efficiency, enabling real-time operation for navigation, object recognition, and environmental monitoring tasks. Keywords: SpectralCA, deep learning, computer vision, hyperspectral imaging, unmanned aerial vehicle, object detection, semi-supervised learning.
- Abstract(参考訳): この研究の関連性は、干渉、視界の低下、カモフラージュにより従来のナビゲーションが信頼性の低い複雑な環境で確実に運用できる無人航空機(UAV)の需要の増加にある。
ハイパースペクトルイメージング(HSI)は、航法、監視、農業、環境監視において重要な、微細な物質認識と物体の分化を可能にすることで、UAVベースのコンピュータビジョンにユニークな機会を提供する。
本研究の目的は、航法、物体検出、地形分類のためのUAV知覚にHSIを組み込んだディープラーニングアーキテクチャを開発することである。
既存のHSIメソッドのレビュー、スペクトル空間横断、トレーニング、ベンチマークによるハイブリッド2D/3D畳み込みアーキテクチャの設計。
この手法は、提案したSpectralCAブロックを導入することで、Mobile 3D Vision Transformer (MDvT) の修正に基づいている。
このブロックは、スペクトルと空間的特徴を融合させ、パラメータと推測時間を減少させながら精度を向上する。
WHU-Hi-HongHuデータセットを用いて実験を行い, 総合的精度, 平均精度, カッパ係数を用いて評価した。
その結果,提案アーキテクチャはUAV知覚効率を向上し,ナビゲーション,オブジェクト認識,環境監視タスクのリアルタイム操作を可能にした。
キーワード: スペクトルCA、ディープラーニング、コンピュータビジョン、ハイパースペクトルイメージング、無人航空機、物体検出、半教師付き学習。
関連論文リスト
- DGE-YOLO: Dual-Branch Gathering and Attention for Accurate UAV Object Detection [0.46040036610482665]
DGE-YOLOは、マルチモーダル情報を効果的に融合するために設計された拡張YOLOベースの検出フレームワークである。
具体的には、モダリティ固有の特徴抽出のためのデュアルブランチアーキテクチャを導入し、モデルが赤外線と可視画像の両方を処理できるようにする。
セマンティック表現をさらに強化するために,空間規模をまたいだ特徴学習を向上する効率的なマルチスケールアテンション(EMA)機構を提案する。
論文 参考訳(メタデータ) (2025-06-29T14:19:18Z) - More Clear, More Flexible, More Precise: A Comprehensive Oriented Object Detection benchmark for UAV [58.89234732689013]
CODroneは、現実の状況を正確に反映した、UAVのための包括的なオブジェクト指向オブジェクト検出データセットである。
また、下流のタスク要求に合わせて設計された新しいベンチマークとしても機能する。
我々は、CODroneを厳格に評価するために、22の古典的またはSOTA法に基づく一連の実験を行う。
論文 参考訳(メタデータ) (2025-04-28T17:56:02Z) - Griffin: Aerial-Ground Cooperative Detection and Tracking Dataset and Benchmark [15.405137983083875]
航空と地上の協力は、UAVの空中視界と地上の車両の局部的な観測を統合することで、有望な解決策を提供する。
本稿では,3つの重要な貢献を通じて,地上3次元協調認識のための包括的ソリューションを提案する。
論文 参考訳(メタデータ) (2025-03-10T07:00:07Z) - Instance-aware Multi-Camera 3D Object Detection with Structural Priors
Mining and Self-Boosting Learning [93.71280187657831]
カメラによる鳥眼視(BEV)知覚パラダイムは、自律運転分野において大きな進歩を遂げている。
画像平面のインスタンス認識をBEV検出器内の深度推定プロセスに統合するIA-BEVを提案する。
論文 参考訳(メタデータ) (2023-12-13T09:24:42Z) - Vision-Based Autonomous Navigation for Unmanned Surface Vessel in
Extreme Marine Conditions [2.8983738640808645]
本稿では,極端海洋環境下での目標物追跡のための自律的視覚に基づくナビゲーション・フレームワークを提案する。
提案手法は砂嵐や霧による可視性低下下でのシミュレーションで徹底的に検証されている。
結果は、ベンチマークしたMBZIRCシミュレーションデータセット全体にわたる最先端のデハージング手法と比較される。
論文 参考訳(メタデータ) (2023-08-08T14:25:13Z) - Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments [20.69412701553767]
無人航空機(UAV)は安定した位置決めのために衛星システムに依存している。
このような状況下では、視覚に基づく技術が代替手段として機能し、UAVの自己配置能力を確実にする。
本稿では,UAV自己配置タスク用に設計された最初の公開データセットであるDenseUAVを提案する。
論文 参考訳(メタデータ) (2022-01-23T07:18:55Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
ポイントクラウドセマンティックセグメンテーションは、自動運転において重要な役割を果たす。
現在の3Dセマンティックセグメンテーションネットワークは、よく表現されたクラスに対して優れた性能を発揮する畳み込みアーキテクチャに焦点を当てている。
Aware 3D Semantic Detection (DASS) フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-22T14:17:40Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
本研究では,無人航空機(UAV)に低高度レーダーを装備し,未知の環境下での飛行における共同検出・マッピング・ナビゲーション問題について検討する。
目的は、マッピング精度を最大化する目的で軌道を最適化することであり、目標検出の観点からは、測定が不十分な領域を避けることである。
論文 参考訳(メタデータ) (2020-05-05T20:39:18Z) - Counterfactual Vision-and-Language Navigation via Adversarial Path Sampling [65.99956848461915]
VLN(Vision-and-Language Navigation)は、エージェントが目標を達成するために3D環境を移動する方法を決定するタスクである。
VLNタスクの問題点の1つは、対話型環境において、人間に注釈を付けた指示で十分なナビゲーションパスを収集することは困難であるため、データの不足である。
本稿では,低品質な拡張データではなく,効果的な条件を考慮可能な,対向駆動の反実的推論モデルを提案する。
論文 参考訳(メタデータ) (2019-11-17T18:02:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。