論文の概要: LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora
- arxiv url: http://arxiv.org/abs/2510.10114v1
- Date: Sat, 11 Oct 2025 08:43:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:29.791212
- Title: LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora
- Title(参考訳): LinearRAG:大規模コーパスを用いた線形グラフ検索生成
- Authors: Luyao Zhuang, Shengyuan Chen, Yilin Xiao, Huachi Zhou, Yujing Zhang, Hao Chen, Qinggang Zhang, Xiao Huang,
- Abstract要約: Retrieval-Augmented Generation (RAG) は大規模言語モデル(LLM)の幻覚を軽減するために広く用いられている。
既存のグラフベースのRAG法は、グラフ構築のための不安定でコストのかかる関係抽出に依存している。
信頼性の高いグラフ構築と正確な経路抽出を可能にする効率的なフレームワークであるLinearRAGを提案する。
- 参考スコア(独自算出の注目度): 17.929144506419064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) is widely used to mitigate hallucinations of Large Language Models (LLMs) by leveraging external knowledge. While effective for simple queries, traditional RAG systems struggle with large-scale, unstructured corpora where information is fragmented. Recent advances incorporate knowledge graphs to capture relational structures, enabling more comprehensive retrieval for complex, multi-hop reasoning tasks. However, existing graph-based RAG (GraphRAG) methods rely on unstable and costly relation extraction for graph construction, often producing noisy graphs with incorrect or inconsistent relations that degrade retrieval quality. In this paper, we revisit the pipeline of existing GraphRAG systems and propose LinearRAG (Linear Graph-based Retrieval-Augmented Generation), an efficient framework that enables reliable graph construction and precise passage retrieval. Specifically, LinearRAG constructs a relation-free hierarchical graph, termed Tri-Graph, using only lightweight entity extraction and semantic linking, avoiding unstable relation modeling. This new paradigm of graph construction scales linearly with corpus size and incurs no extra token consumption, providing an economical and reliable indexing of the original passages. For retrieval, LinearRAG adopts a two-stage strategy: (i) relevant entity activation via local semantic bridging, followed by (ii) passage retrieval through global importance aggregation. Extensive experiments on four datasets demonstrate that LinearRAG significantly outperforms baseline models.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は大規模言語モデル(LLM)の幻覚を軽減するために広く用いられている。
単純なクエリには有効だが、従来のRAGシステムは、情報が断片化されている大規模で非構造化のコーパスに悩まされている。
近年の進歩は、リレーショナル構造を捉えるための知識グラフを取り入れており、複雑なマルチホップ推論タスクのより包括的な検索を可能にしている。
しかし、既存のグラフベースのRAG (GraphRAG) 法は、グラフ構築のための不安定でコストのかかる関係抽出に依存しており、しばしば、検索品質を劣化させる誤ったあるいは矛盾した関係を持つノイズの多いグラフを生成する。
本稿では,既存のGraphRAGシステムのパイプラインを再検討し,信頼性の高いグラフ構築と正確な通過抽出を可能にする効率的なフレームワークであるLinearRAG(Linear Graph-based Retrieval-Augmented Generation)を提案する。
特に、LinearRAGは、軽量なエンティティ抽出とセマンティックリンクのみを使用し、不安定な関係モデリングを避けるために、Tri-Graphと呼ばれる関係のない階層グラフを構築している。
このグラフ構築の新たなパラダイムは、コーパスサイズと線形にスケールし、余分なトークン消費を伴わず、元のパスの経済的かつ信頼性の高いインデックスを提供する。
検索にLinearRAGは2段階戦略を採用している。
(i)局所的意味的ブリッジングによる関連エンティティアクティベーション
(II)グローバルな重要性集約による通路検索。
4つのデータセットに対する大規模な実験は、LinearRAGがベースラインモデルを大幅に上回っていることを示している。
関連論文リスト
- G-reasoner: Foundation Models for Unified Reasoning over Graph-structured Knowledge [88.82814893945077]
大規模言語モデル(LLM)は複雑な推論において優れているが、静的かつ不完全なパラメトリック知識によって制限される。
最近のグラフ強化RAG (GraphRAG) は、このギャップを補足したグラフを構築し、LLMがそれらを推論できるようにする。
G-reasonerは、様々なグラフ構造化知識を推論するためにグラフと言語基盤モデルを統合した統合フレームワークである。
論文 参考訳(メタデータ) (2025-09-29T04:38:12Z) - Youtu-GraphRAG: Vertically Unified Agents for Graph Retrieval-Augmented Complex Reasoning [32.78218766121055]
グラフ検索拡張生成(GraphRAG)は,複雑な推論において,大規模言語モデルを効果的に拡張した。
本稿では,フレームワーク全体を複雑な統合として結合する,垂直に統一されたエージェントパラダイムYoutu-GraphRAGを提案する。
論文 参考訳(メタデータ) (2025-08-27T13:13:20Z) - Graph-R1: Towards Agentic GraphRAG Framework via End-to-end Reinforcement Learning [20.05893083101089]
Graph-R1は、エンドツーエンド強化学習(RL)によるエージェントGraphRAGフレームワークである
軽量な知識ハイパーグラフ構築、マルチターンエージェント環境相互作用としてのモデル検索を導入している。
標準RAGデータセットの実験では、Graph-R1は、精度、検索効率、生成品質を推算する従来のGraphRAGおよびRL強化RAGメソッドよりも優れていた。
論文 参考訳(メタデータ) (2025-07-29T15:01:26Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
大規模言語モデル(LLM)は、様々な領域にわたって強い帰納的推論能力を示している。
既存のRAGパイプラインのほとんどは非構造化テキストに依存しており、解釈可能性と構造化推論を制限する。
近年,知識グラフ解答のための知識グラフとLLMの統合について検討している。
KGQAにおける効率的なグラフ検索のための新しいフレームワークであるRAPLを提案する。
論文 参考訳(メタデータ) (2025-06-11T12:03:52Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [79.75818239774952]
大きな言語モデル(LLM)は目覚ましい能力を示しているが、幻覚や時代遅れの情報といった問題に苦戦している。
Retrieval-augmented Generation (RAG) は、情報検索システム(IR)を用いて、外部知識のLLM出力を基底にすることで、これらの問題に対処する。
本稿では、検索後句における新しい推論誘導二重アライメントフレームワークであるAlign-GRAGを提案する。
論文 参考訳(メタデータ) (2025-05-22T05:15:27Z) - NodeRAG: Structuring Graph-based RAG with Heterogeneous Nodes [25.173078967881803]
Retrieval-augmented Generation (RAG)は、大規模な言語モデルに対して、外部およびプライベートコーパスへのアクセスを許可する。
現在のグラフベースのRAGアプローチは、グラフ構造の設計をほとんど優先順位付けしない。
不適切な設計のグラフは、多様なグラフアルゴリズムのシームレスな統合を妨げるだけでなく、ワークフローの不整合をもたらす。
異種グラフ構造を導入したグラフ中心のフレームワークであるNodeRAGを提案する。
論文 参考訳(メタデータ) (2025-04-15T18:24:00Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
完全なRAGパイプラインをシームレスに統合するモジュラーフレームワークであるRAG-on-Graphs Library(RGL)を紹介した。
RGLは、さまざまなグラフフォーマットをサポートし、必須コンポーネントの最適化実装を統合することで、重要な課題に対処する。
評価の結果,RGLはプロトタイピングプロセスの高速化だけでなく,グラフベースRAGシステムの性能や適用性の向上も図っている。
論文 参考訳(メタデータ) (2025-03-25T03:21:48Z) - Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
グラフの構造と表現を学習するための生成訓練と識別訓練のジョイントに基づく教師なし手法を提案する。
本稿では,ECL-GSR(Energy-based Contrastive Learning)によるグラフ構造再構成(GSR)フレームワークを提案する。
ECL-GSRは、主要なベースラインに対するサンプルやメモリの少ない高速なトレーニングを実現し、下流タスクの単純さと効率性を強調している。
論文 参考訳(メタデータ) (2024-12-20T04:05:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。