論文の概要: Revisiting Trust in the Era of Generative AI: Factorial Structure and Latent Profiles
- arxiv url: http://arxiv.org/abs/2510.10199v1
- Date: Sat, 11 Oct 2025 12:39:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 20:23:38.928125
- Title: Revisiting Trust in the Era of Generative AI: Factorial Structure and Latent Profiles
- Title(参考訳): 生成AI時代の信頼を再考する:要因構造と潜在プロファイル
- Authors: Haocan Sun, Weizi Liu, Di Wu, Guoming Yu, Mike Yao,
- Abstract要約: 信頼は、人々が人工知能(AI)を採用し、どのように依存するかを形作る最も重要な要素の1つです。
既存の研究の多くは、システムの信頼性、正確性、使いやすさに重点を置いて、機能の観点から信頼度を測定している。
本研究では,GenAIにおける信頼の合理性と関係性の両方を捉えるための新しい尺度であるHuman-AI Trust Scale(HAITS)を導入し,検証する。
- 参考スコア(独自算出の注目度): 5.109743403025609
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trust is one of the most important factors shaping whether and how people adopt and rely on artificial intelligence (AI). Yet most existing studies measure trust in terms of functionality, focusing on whether a system is reliable, accurate, or easy to use, while giving less attention to the social and emotional dimensions that are increasingly relevant for today's generative AI (GenAI) systems. These systems do not just process information; they converse, respond, and collaborate with users, blurring the line between tool and partner. In this study, we introduce and validate the Human-AI Trust Scale (HAITS), a new measure designed to capture both the rational and relational aspects of trust in GenAI. Drawing on prior trust theories, qualitative interviews, and two waves of large-scale surveys in China and the United States, we used exploratory (n = 1,546) and confirmatory (n = 1,426) factor analyses to identify four key dimensions of trust: Affective Trust, Competence Trust, Benevolence & Integrity, and Perceived Risk. We then applied latent profile analysis to classify users into six distinct trust profiles, revealing meaningful differences in how affective-competence trust and trust-distrust frameworks coexist across individuals and cultures. Our findings offer a validated, culturally sensitive tool for measuring trust in GenAI and provide new insight into how trust evolves in human-AI interaction. By integrating instrumental and relational perspectives of trust, this work lays the foundation for more nuanced research and design of trustworthy AI systems.
- Abstract(参考訳): 信頼は、人々が人工知能(AI)を採用し、どのように依存するかを形作る最も重要な要素の1つです。
しかし、既存の研究の多くは、システムの信頼性、正確性、使いやすさに重点を置いて、機能の観点から信頼を測っている。
これらのシステムは単に情報を処理するだけでなく、ユーザーと会話し、反応し、協力し、ツールとパートナーの境界を曖昧にする。
本研究では,GenAIにおける信頼の合理性と関係性の両方を捉えるための新しい尺度であるHuman-AI Trust Scale(HAITS)を導入し,検証する。
先行信頼理論,質的インタビュー,および中国と米国における大規模調査の2つの波を参考に,調査 (n = 1,546) と確認 (n = 1,426) 因子分析を用いて,信頼の4つの重要な側面を同定した: 影響的信頼, 能力的信頼, ベネボレンス・アンド・インテリジェンス, 知覚的リスク。
次に、潜在プロファイル分析を適用し、ユーザを6つの異なる信頼プロファイルに分類し、感情能力信頼と信頼不信フレームワークが個人や文化間で共存する方法について有意義な差異を明らかにした。
我々の発見は、GenAIの信頼を計測し、人間とAIの相互作用において信頼がどのように進化するかを新たな洞察を提供する、検証された文化的に敏感なツールを提供する。
インストゥルメンタルおよびリレーショナルな信頼の観点を統合することで、この研究は信頼に値するAIシステムのより微妙な研究と設計の基礎を築いた。
関連論文リスト
- On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective [377.2483044466149]
Generative Foundation Models (GenFMs) がトランスフォーメーションツールとして登場した。
彼らの広く採用されていることは、次元の信頼に関する重要な懸念を提起する。
本稿では,3つの主要なコントリビューションを通じて,これらの課題に対処するための包括的枠組みを提案する。
論文 参考訳(メタデータ) (2025-02-20T06:20:36Z) - Trusting Your AI Agent Emotionally and Cognitively: Development and Validation of a Semantic Differential Scale for AI Trust [16.140485357046707]
感情的・認知的信頼のための27項目のセマンティック・ディファレンシャル・スケールを開発し,検証した。
我々の経験的発見は、信頼の感情的側面と認知的側面が相互にどのように相互作用し、AIエージェントに対する個人の全体的な信頼を形成するかを示した。
論文 参考訳(メタデータ) (2024-07-25T18:55:33Z) - Fostering Trust and Quantifying Value of AI and ML [0.0]
AIとML推論の信頼について多くの議論がなされているが、それが何を意味するのかを定義するためにはほとんど行われていない。
より信頼できる機械学習推論を生み出すことは、製品の価値を高めるための道です。
論文 参考訳(メタデータ) (2024-07-08T13:25:28Z) - A Diachronic Perspective on User Trust in AI under Uncertainty [52.44939679369428]
現代のNLPシステムは、しばしば未分類であり、ユーザの信頼を損なう確実な誤った予測をもたらす。
賭けゲームを用いて,信頼を損なう事象に対するユーザの信頼の進化について検討する。
論文 参考訳(メタデータ) (2023-10-20T14:41:46Z) - Distrust in (X)AI -- Measurement Artifact or Distinct Construct? [0.0]
信頼は説明可能な人工知能(XAI)を開発する上で重要な動機である
XAIでは不信は比較的過小評価されているようだ。
心理学的証拠は 信頼と不信を区別する
論文 参考訳(メタデータ) (2023-03-29T07:14:54Z) - Designing for Responsible Trust in AI Systems: A Communication
Perspective [56.80107647520364]
我々は、MATCHと呼ばれる概念モデルを開発するために、技術に対する信頼に関するコミュニケーション理論と文献から引き出す。
私たちは、AIシステムの能力として透明性とインタラクションを強調します。
我々は、技術クリエーターが使用する適切な方法を特定するのに役立つ要件のチェックリストを提案する。
論文 参考訳(メタデータ) (2022-04-29T00:14:33Z) - Trust in AI and Its Role in the Acceptance of AI Technologies [12.175031903660972]
本稿では,AI技術を利用する意図に対する信頼の役割を説明する。
調査1では,大学生の質問応答に基づくAI音声アシスタントの利用における信頼感の役割について検討した。
調査2では、米国住民の代表サンプルのデータを用いて、異なる信頼の次元について検討した。
論文 参考訳(メタデータ) (2022-03-23T19:18:19Z) - Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and
Goals of Human Trust in AI [55.4046755826066]
我々は、社会学の対人信頼(すなわち、人間の信頼)に着想を得た信頼のモデルについて議論する。
ユーザとAIの間の信頼は、暗黙的あるいは明示的な契約が保持する信頼である。
我々は、信頼できるAIの設計方法、信頼が浮かび上がったかどうか、保証されているかどうかを評価する方法について論じる。
論文 参考訳(メタデータ) (2020-10-15T03:07:23Z) - Where Does Trust Break Down? A Quantitative Trust Analysis of Deep
Neural Networks via Trust Matrix and Conditional Trust Densities [94.65749466106664]
本稿では,新しい信頼量化戦略である信頼行列の概念を紹介する。
信頼行列は、所定のアクター・オークル回答シナリオに対して期待される質問・回答信頼を定義する。
我々は、条件付き信頼密度の概念により、信頼密度の概念をさらに拡張する。
論文 参考訳(メタデータ) (2020-09-30T14:33:43Z) - How Much Can We Really Trust You? Towards Simple, Interpretable Trust
Quantification Metrics for Deep Neural Networks [94.65749466106664]
我々は思考実験を行い、信頼と信頼に関する2つの重要な疑問を探求する。
我々は、一連の質問に答える際の行動に基づいて、ディープニューラルネットワークの全体的な信頼性を評価するための一連のメトリクスを紹介します。
提案されたメトリクスは必ずしも完璧ではありませんが、よりよいメトリクスに向かって会話を推し進めることが望まれています。
論文 参考訳(メタデータ) (2020-09-12T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。