論文の概要: LLM-Friendly Knowledge Representation for Customer Support
- arxiv url: http://arxiv.org/abs/2510.10331v1
- Date: Sat, 11 Oct 2025 20:24:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:29.893576
- Title: LLM-Friendly Knowledge Representation for Customer Support
- Title(参考訳): 顧客支援のためのLLMフレンドリーな知識表現
- Authors: Hanchen Su, Wei Luo, Wei Han, Yu Elaine Liu, Yufeng Wayne Zhang, Cen Mia Zhao, Ying Joy Zhang, Yashar Mehdad,
- Abstract要約: 本稿では,大規模言語モデル(LLM)をAirbnbの顧客サポート業務の複雑さをナビゲートするフレームワークに統合することで,実践的なアプローチを提案する。
本稿では,新しい改質手法であるインテント,コンテキスト,アクション(ICA)フォーマットを用いて,ポリシーや構造をよりLLMに変換する手法を提案する。
我々は、人間の介入を最小限に抑えたトレーニングデータを作成するための合成データ生成戦略を開発し、コスト効率の良いモデル微調整を可能にした。
- 参考スコア(独自算出の注目度): 11.502106254437068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a practical approach by integrating Large Language Models (LLMs) with a framework designed to navigate the complexities of Airbnb customer support operations. In this paper, our methodology employs a novel reformatting technique, the Intent, Context, and Action (ICA) format, which transforms policies and workflows into a structure more comprehensible to LLMs. Additionally, we develop a synthetic data generation strategy to create training data with minimal human intervention, enabling cost-effective fine-tuning of our model. Our internal experiments (not applied to Airbnb products) demonstrate that our approach of restructuring workflows and fine-tuning LLMs with synthetic data significantly enhances their performance, setting a new benchmark for their application in customer support. Our solution is not only cost-effective but also improves customer support, as evidenced by both accuracy and manual processing time evaluation metrics.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)をAirbnbの顧客サポート業務の複雑さをナビゲートするフレームワークに統合することで,実践的なアプローチを提案する。
本稿では,ポリシーやワークフローを LLM により理解しやすい構造に変換する新しい手法である Intent, Context, および Action (ICA) フォーマットを用いる。
さらに、人間の介入を最小限に抑えたトレーニングデータを作成するための合成データ生成戦略を開発し、コスト効率の良いモデル微調整を可能にした。
当社の内部実験(Airbnb製品には適用されない)では、ワークフローの再構築と合成データによる微調整 LLM のアプローチによってパフォーマンスが大幅に向上し、顧客サポートにおけるアプリケーションの新たなベンチマークが設定されていることを実証しています。
私たちのソリューションはコスト効率だけでなく、精度と手作業による処理時間評価の指標によって証明されているように、顧客サポートも改善します。
関連論文リスト
- Towards Efficient and Effective Alignment of Large Language Models [7.853945494882636]
大規模言語モデル(LLM)は多様なタスクにまたがる優れた能力を示すが、それらを効率的かつ効果的に人間の期待に合わせることは重要な課題である。
この論文は、データ収集、トレーニング、評価において新しい方法論を導入することで、LCMアライメントを推し進める。
論文 参考訳(メタデータ) (2025-06-11T02:08:52Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
自律型大規模言語モデル(LLM)エージェントを体系的に強化し、評価し、改善するためのガイムスタイルのフレームワーク。
MLE-Dojoは、現実的なエンジニアリングシナリオを反映した、多様でオープンなMLEタスクを慎重にキュレートする。
完全に実行可能な環境は、教師付き微調整と強化学習の両方を通して包括的なエージェントトレーニングをサポートする。
論文 参考訳(メタデータ) (2025-05-12T17:35:43Z) - ToolACE-R: Model-aware Iterative Training and Adaptive Refinement for Tool Learning [84.69651852838794]
ツール学習により、LLM(Large Language Models)は複雑なユーザタスクを解決するための外部ツールを活用することができる。
本稿では,ツール学習のための反復学習と適応的洗練の両方を含む新しいフレームワークであるToolACE-Rを提案する。
我々は、いくつかのベンチマークデータセットにわたる広範な実験を行い、ToolACE-Rが高度なAPIベースのモデルと比較して、競争力のあるパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2025-04-02T06:38:56Z) - Generating Structured Plan Representation of Procedures with LLMs [5.623006055588189]
本稿では,SOPを構造化表現に変換する新しい手法であるSOPStructuringを紹介する。
SOPStructは、異なるドメインにわたるSOPの標準化された表現を生成し、認知負荷を低減し、ユーザの理解を改善する。
我々の研究は、プロセスモデリングを合理化するために、大規模言語モデルの変換可能性を強調します。
論文 参考訳(メタデータ) (2025-03-28T22:38:24Z) - IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Experts [28.9807389592324]
機械学習のワークフローを自動化するための有望なソリューションとして、大規模言語モデル(LLM)エージェントが登場した。
LLM駆動のMLパイプライン設計のための新しい戦略であるIterative Refinementを紹介します。
実際のトレーニングフィードバックに基づいて個々のコンポーネントを体系的に更新することにより、イテレーティブリファインメントはモデル全体のパフォーマンスを改善する。
論文 参考訳(メタデータ) (2025-02-25T01:52:37Z) - Building a Family of Data Augmentation Models for Low-cost LLM Fine-tuning on the Cloud [12.651588927599441]
モデル微調整の効率を大幅に向上するために,データ拡張モデル群を提案する。
これらのモデルは十分に小さなLLMに基づいて訓練され、推論コストの低い重要な機能をサポートする。
実験と応用研究は、我々のアプローチの有効性を証明した。
論文 参考訳(メタデータ) (2024-12-06T09:04:12Z) - Leveraging Large Language Models for Enhanced Process Model Comprehension [33.803742664323856]
ビジネスプロセスマネジメント(BPM)では、効果的にプロセスモデルを理解することが重要であるが、重大な課題を生じさせる。
本稿では,Large Language Models(LLM)の高度な機能を活用し,複雑なプロセスモデルの解釈可能性を高める新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-08T13:12:46Z) - LLM-DA: Data Augmentation via Large Language Models for Few-Shot Named
Entity Recognition [67.96794382040547]
$LLM-DA$は、数発のNERタスクのために、大きな言語モデル(LLM)に基づいた、新しいデータ拡張テクニックである。
提案手法では,14のコンテキスト書き換え戦略を採用し,同一タイプのエンティティ置換を設計し,ロバスト性を高めるためにノイズ注入を導入する。
論文 参考訳(メタデータ) (2024-02-22T14:19:56Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
本稿では,Large Language Models (LLMs) の自己誘導手法を導入し,オープンソースデータセットからサクラサンプルを自動識別し,選択する。
我々の重要な革新である命令追従困難度(IFD)メトリックは、モデルが期待する応答と本質的な生成能力の相違を識別するための重要な指標として現れます。
論文 参考訳(メタデータ) (2023-08-23T09:45:29Z) - Improving Meta-learning for Low-resource Text Classification and
Generation via Memory Imitation [87.98063273826702]
本稿では,メモリ模倣メタラーニング(MemIML)手法を提案する。
本手法の有効性を証明するために理論的解析を行った。
論文 参考訳(メタデータ) (2022-03-22T12:41:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。