論文の概要: Reinforced Domain Selection for Continuous Domain Adaptation
- arxiv url: http://arxiv.org/abs/2510.10530v1
- Date: Sun, 12 Oct 2025 10:05:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:29.993301
- Title: Reinforced Domain Selection for Continuous Domain Adaptation
- Title(参考訳): 連続ドメイン適応のための強化ドメイン選択
- Authors: Hanbing Liu, Huaze Tang, Yanru Wu, Yang Li, Xiao-Ping Zhang,
- Abstract要約: 教師なし連続ドメイン適応設定において,強化学習と機能障害を組み合わせたドメインパス選択を行う新しいフレームワークを提案する。
提案手法では,潜伏領域の埋め込み距離を利用した非教師なし報酬機構を導入する。
そこで本手法は,ドメイン固有の特徴を用いた教師なし報酬の計算を容易にし,ドメイン適応を促進する。
- 参考スコア(独自算出の注目度): 20.677602074259298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuous Domain Adaptation (CDA) effectively bridges significant domain shifts by progressively adapting from the source domain through intermediate domains to the target domain. However, selecting intermediate domains without explicit metadata remains a substantial challenge that has not been extensively explored in existing studies. To tackle this issue, we propose a novel framework that combines reinforcement learning with feature disentanglement to conduct domain path selection in an unsupervised CDA setting. Our approach introduces an innovative unsupervised reward mechanism that leverages the distances between latent domain embeddings to facilitate the identification of optimal transfer paths. Furthermore, by disentangling features, our method facilitates the calculation of unsupervised rewards using domain-specific features and promotes domain adaptation by aligning domain-invariant features. This integrated strategy is designed to simultaneously optimize transfer paths and target task performance, enhancing the effectiveness of domain adaptation processes. Extensive empirical evaluations on datasets such as Rotated MNIST and ADNI demonstrate substantial improvements in prediction accuracy and domain selection efficiency, establishing our method's superiority over traditional CDA approaches.
- Abstract(参考訳): 継続的ドメイン適応(Continuous Domain Adaptation, CDA)は、ソースドメインから中間ドメインを経てターゲットドメインに徐々に適応することによって、重要なドメインシフトを効果的にブリッジする。
しかし、明確なメタデータなしで中間ドメインを選択することは、既存の研究で広く研究されていない重要な課題である。
そこで本稿では,強化学習と特徴の絡み合いを組み合わせ,教師なしのCDA設定でドメインパスの選択を行う新しいフレームワークを提案する。
提案手法では, 最適転送経路の同定を容易にするために, 潜伏領域の埋め込み距離を利用した非教師なし報酬機構を導入する。
さらに,特徴を分離することにより,ドメイン固有特徴を用いた教師なし報酬の計算が容易になり,ドメイン不変特徴の整合化によるドメイン適応が促進される。
この統合戦略は、転送パスとタスクパフォーマンスを同時に最適化し、ドメイン適応プロセスの有効性を高めるように設計されている。
回転MNISTやADNIなどのデータセットに対する大規模な実験評価は、予測精度と領域選択効率を大幅に向上させ、従来のCDAアプローチよりもメソッドの優位性を確立した。
関連論文リスト
- Overcoming Negative Transfer by Online Selection: Distant Domain Adaptation for Fault Diagnosis [42.85741244467877]
遠距離領域適応問題」という用語は、ラベル付きソースドメインからラベル付き未ラベルのターゲットドメインへの適応の難しさを記述している。
この問題は、ソースドメインからの外部知識がターゲットドメインのパフォーマンスに悪影響を及ぼす、負の転送のリスクを示す。
この課題に対応するために、我々は、新しいオンライン選択適応(OSAA)アプローチを提案する。
論文 参考訳(メタデータ) (2024-05-25T07:17:47Z) - Revisiting the Domain Shift and Sample Uncertainty in Multi-source
Active Domain Transfer [69.82229895838577]
Active Domain Adaptation (ADA)は、アノテートするターゲットデータの限られた数を選択することで、新しいターゲットドメインにおけるモデル適応を最大限に向上することを目的としている。
この設定は、複数のソースからトレーニングデータを収集するより実践的なシナリオを無視します。
これは、ADAを単一のソースドメインから複数のソースドメインに拡張する、新しい、挑戦的な知識転送の設定を目標にしています。
論文 参考訳(メタデータ) (2023-11-21T13:12:21Z) - Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation [3.367755441623275]
マルチソースアン教師付きドメイン適応(MUDA)は、関連するソースドメインから未ラベルのターゲットドメインに知識を転送することを目的としている。
アクティブマルチドメイン適応(D3AAMDA)のための動的ドメイン不一致適応法(Dynamic Domain Disrepancy Adjustment)を提案する。
このメカニズムは、ソースドメインとターゲットドメイン間の特徴のアライメントレベルを制御し、ソースドメイン内のローカルな有利な特徴情報を効果的に活用する。
論文 参考訳(メタデータ) (2023-07-26T09:40:19Z) - Test-time Adaptation in the Dynamic World with Compound Domain Knowledge
Management [75.86903206636741]
テスト時間適応(TTA)により、モデルは新しい環境に適応し、テスト時間中にパフォーマンスを向上させることができる。
TTAのいくつかの研究は、継続的に変化する環境において、有望な適応性能を示している。
本稿ではまず,複合ドメイン知識管理を用いた堅牢なTTAフレームワークを提案する。
次に、ソースと現在のターゲットドメイン間のドメイン類似性を用いて適応率を変調する新しい正規化を考案する。
論文 参考訳(メタデータ) (2022-12-16T09:02:01Z) - Domain Adaptation from Scratch [24.612696638386623]
我々は、NLPを機密ドメインに拡張するために欠かせない、新しい学習セットである「スクラッチからのドメイン適応」を提示する。
この設定では、トレーニングされたモデルがセンシティブなターゲットドメイン上でうまく動作するように、ソースドメインの集合からのデータを効率的にアノテートすることを目的としている。
本研究は、データ選択やドメイン適応アルゴリズムからアクティブな学習パラダイムまで、この挑戦的な設定に対するいくつかのアプローチを比較した。
論文 参考訳(メタデータ) (2022-09-02T05:55:09Z) - Joint Attention-Driven Domain Fusion and Noise-Tolerant Learning for
Multi-Source Domain Adaptation [2.734665397040629]
マルチソースUnsupervised Domain Adaptationはラベル付きデータを持つ複数のソースドメインからラベル付きターゲットドメインに知識を転送する。
異なるドメインとターゲットドメイン内のノイズの多い擬似ラベル間の分散の相違は、どちらもパフォーマンスのボトルネックにつながる。
本稿では,意識駆動型ドメイン融合(ADNT)と雑音耐性学習(ADNT)を統合し,上記の2つの問題に対処するアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-05T01:08:41Z) - Gradual Domain Adaptation via Self-Training of Auxiliary Models [50.63206102072175]
ソースとターゲットドメイン間のギャップを増やすことで、ドメイン適応はより難しくなります。
中間領域のモデルを学習する補助モデル(AuxSelfTrain)の自己学習を提案する。
教師なしおよび半教師付きドメイン適応のベンチマークデータセットの実験は、その有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:15:25Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
教師なしのドメイン適応は、確立されたソースドメイン情報に依存するラベルなしのターゲットドメインを促進する。
従来の手法では、潜在空間におけるドメインの不一致を強制的に低減することで、本質的なデータ構造が破壊される。
本稿では、2つの中間領域をブリッジソースとターゲットドメインに補間する一貫した分類器を用いた双方向生成ドメイン適応モデルを提案する。
論文 参考訳(メタデータ) (2020-02-12T09:45:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。