論文の概要: High-Probability Bounds For Heterogeneous Local Differential Privacy
- arxiv url: http://arxiv.org/abs/2510.11895v1
- Date: Mon, 13 Oct 2025 19:54:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-15 19:02:32.080818
- Title: High-Probability Bounds For Heterogeneous Local Differential Privacy
- Title(参考訳): 不均一な局所微分プライバシーのための高確率境界
- Authors: Maryam Aliakbarpour, Alireza Fallah, Swaha Roy, Ria Stevens,
- Abstract要約: 局所差分プライバシー(LDP)に基づく統計的推定について検討する。
我々は、少なくとも1-βの確率を保持するような$ell$-normの有限サンプル上限を開発する。
我々はさらに$ell_infty$-distanceで分布学習を研究し、不均一なプライバシー要求の下で高い確率保証を持つアルゴリズムを設計する。
- 参考スコア(独自算出の注目度): 6.092107731520248
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study statistical estimation under local differential privacy (LDP) when users may hold heterogeneous privacy levels and accuracy must be guaranteed with high probability. Departing from the common in-expectation analyses, and for one-dimensional and multi-dimensional mean estimation problems, we develop finite sample upper bounds in $\ell_2$-norm that hold with probability at least $1-\beta$. We complement these results with matching minimax lower bounds, establishing the optimality (up to constants) of our guarantees in the heterogeneous LDP regime. We further study distribution learning in $\ell_\infty$-distance, designing an algorithm with high-probability guarantees under heterogeneous privacy demands. Our techniques offer principled guidance for designing mechanisms in settings with user-specific privacy levels.
- Abstract(参考訳): ユーザが不均一なプライバシレベルを保持でき、高い確率で精度が保証されなければならない場合、ローカルディファレンシャルプライバシ(LDP)に基づく統計的推定について検討する。
一般的なin-expectation解析と1次元および多次元平均推定問題とは別に、少なくとも1-\beta$の確率を持つ$\ell_2$-normの有限サンプル上限を開発する。
我々はこれらの結果を、一致したミニマックス下限で補い、不均一なLDP体制における保証の最適性(定数まで)を確立する。
我々はさらに$\ell_\infty$-distanceにおける分布学習を研究し、不均一なプライバシー要求の下で高い確率保証を持つアルゴリズムを設計する。
本手法は,ユーザ固有のプライバシレベルの設定でメカニズムを設計するための原則的ガイダンスを提供する。
関連論文リスト
- Convergent Differential Privacy Analysis for General Federated Learning: the $f$-DP Perspective [57.35402286842029]
フェデレートラーニング(Federated Learning, FL)は、ローカルプライバシを重視した効率的な協調トレーニングパラダイムである。
ディファレンシャルプライバシ(DP)は、私的保護の信頼性を捕捉し、保証するための古典的なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:22:21Z) - Fixed-Budget Differentially Private Best Arm Identification [62.36929749450298]
差分プライバシー制約下における固定予算制度における線形包帯のベストアーム識別(BAI)について検討した。
誤差確率に基づいてミニマックス下限を導出し、下限と上限が指数関数的に$T$で崩壊することを示した。
論文 参考訳(メタデータ) (2024-01-17T09:23:25Z) - A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility [4.7712438974100255]
パーソナライズされたプライバシパラメータで$(epsilon_i,delta_i)$-PLDP設定をシャッフルする方法を示す。
shuffled $(epsilon_i,delta_i)$-PLDP process approximately saves $mu$-Gaussian Differential Privacy with mu = sqrtfrac2sum_i=1n frac1-delta_i1+eepsilon_i-max_ifrac1-delta_i1+e
論文 参考訳(メタデータ) (2023-12-22T02:31:46Z) - Differentially private multivariate medians [5.436813619675772]
差分的にプライベートな深度に基づく中央値に対する新しい有限サンプル性能保証法を開発した。
Cauchyの限界の下では、重み付けされた位置推定のコストがプライバシーのコストよりも高いことを示している。
論文 参考訳(メタデータ) (2022-10-12T17:56:04Z) - On the Statistical Complexity of Estimation and Testing under Privacy Constraints [17.04261371990489]
差分プライバシー下での統計的テストのパワーをプラグアンドプレイ方式で特徴付ける方法を示す。
プライバシ保護のレベルが非常に高い場合にのみ、プライバシの維持が顕著なパフォーマンス低下をもたらすことを示す。
最後に,プライベート凸解法であるDP-SGLDアルゴリズムを高信頼度で最大推定できることを示した。
論文 参考訳(メタデータ) (2022-10-05T12:55:53Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
現代の機械学習アルゴリズムは、データからきめ細かい情報を抽出して正確な予測を提供することを目的としており、プライバシー保護の目標と矛盾することが多い。
本稿では、プライバシを保ちながら優れたパフォーマンスを確保するために、プライバシを保存する機械学習アルゴリズムを開発することの実践的および理論的重要性について論じる。
論文 参考訳(メタデータ) (2022-09-09T08:54:13Z) - Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for
Private Learning [74.73901662374921]
差分プライベートモデルは、モデルが多数のトレーニング可能なパラメータを含む場合、ユーティリティを劇的に劣化させる。
偏微分プライベート深層モデルの精度向上のためのアルゴリズムemphGradient Embedding Perturbation (GEP)を提案する。
論文 参考訳(メタデータ) (2021-02-25T04:29:58Z) - Learning with User-Level Privacy [61.62978104304273]
ユーザレベルの差分プライバシー制約下での学習課題を,アルゴリズムを用いて解析する。
個々のサンプルのプライバシーのみを保証するのではなく、ユーザレベルのdpはユーザの貢献全体を保護します。
プライバシコストが$tau$に比例した$K$適応的に選択されたクエリのシーケンスにプライベートに答えるアルゴリズムを導き出し、私たちが検討する学習タスクを解決するためにそれを適用します。
論文 参考訳(メタデータ) (2021-02-23T18:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。