論文の概要: Applying Graph Analysis for Unsupervised Fast Malware Fingerprinting
- arxiv url: http://arxiv.org/abs/2510.12811v1
- Date: Tue, 07 Oct 2025 05:02:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 20:13:28.314687
- Title: Applying Graph Analysis for Unsupervised Fast Malware Fingerprinting
- Title(参考訳): 教師なし高速フィンガープリントにおけるグラフ解析の適用
- Authors: ElMouatez Billah Karbab, Mourad Debbabi,
- Abstract要約: 我々はTrapNetを提案する。TrapNetは、マルウェアのフィンガープリントとグループ化のための、新しく、スケーラブルで、教師なしのフレームワークである。
TrapNetはパッケージ化されたバイナリを検出し、既知のジェネリックパッカーツールを使用してアンパックする。
これは下層のセマンティクスをキャプチャするダイジェストを生成する。
- 参考スコア(独自算出の注目度): 4.558679802785059
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Malware proliferation is increasing at a tremendous rate, with hundreds of thousands of new samples identified daily. Manual investigation of such a vast amount of malware is an unrealistic, time-consuming, and overwhelming task. To cope with this volume, there is a clear need to develop specialized techniques and efficient tools for preliminary filtering that can group malware based on semantic similarity. In this paper, we propose TrapNet, a novel, scalable, and unsupervised framework for malware fingerprinting and grouping. TrapNet employs graph community detection techniques for malware fingerprinting and family attribution based on static analysis, as follows: (1) TrapNet detects packed binaries and unpacks them using known generic packer tools. (2) From each malware sample, it generates a digest that captures the underlying semantics. Since the digest must be dense, efficient, and suitable for similarity checking, we designed FloatHash (FH), a novel numerical fuzzy hashing technique that produces a short real-valued vector summarizing the underlying assembly items and their order. FH is based on applying Principal Component Analysis (PCA) to ordered assembly items (e.g., opcodes, function calls) extracted from the malware's assembly code. (3) Representing malware with short numerical vectors enables high-performance, large-scale similarity computation, which allows TrapNet to build a malware similarity network. (4) Finally, TrapNet employs state-of-the-art community detection algorithms to identify dense communities, which represent groups of malware with similar semantics. Our extensive evaluation of TrapNet demonstrates its effectiveness in terms of the coverage and purity of the detected communities, while also highlighting its runtime efficiency, which outperforms other state-of-the-art solutions.
- Abstract(参考訳): マルウェアの増殖は急速に増加しており、毎日何十万もの新しいサンプルが発見されている。
このような大量のマルウェアを手動で調査することは、非現実的で時間をかけ、圧倒的な作業である。
このボリュームに対処するためには、セマンティックな類似性に基づいてマルウェアをグループ化できる予備フィルタリングのための特殊な技術と効率的なツールを開発する必要がある。
本稿では,マルウェアのフィンガープリントとグループ化のための新しい,スケーラブルで教師なしのフレームワークであるTrapNetを提案する。
TrapNetは、静的解析に基づいて、マルウェアのフィンガープリントと家族の属性にグラフコミュニティ検出技術を採用している。
2)各マルウェアサンプルから下層のセマンティクスをキャプチャするダイジェストを生成する。
そこで我々はFloatHash(FH)を設計した。FloatHash(FH)はファジィハッシュ(FH)と呼ばれるファジィハッシュ(ファジィハッシュ)と呼ばれる,ファジィハッシュ(ファジィハッシュ)の手法で,基礎となる組立アイテムとその順序を要約した,短い実数値ベクトルを生成する手法である。
FHは、マルウェアのアセンブリコードから抽出された順序付けられたアセンブリアイテム(例えば、オプコード、関数呼び出し)に主成分分析(PCA)を適用することに基づいている。
(3) 短い数値ベクトルによるマルウェアの表現により、TrapNetがマルウェアの類似性ネットワークを構築することができる高性能で大規模な類似性計算が可能となる。
(4) 最後にTrapNetは、最先端のコミュニティ検出アルゴリズムを用いて、類似のセマンティクスを持つマルウェアのグループを表す密集したコミュニティを識別する。
TrapNetの広範な評価は、検出されたコミュニティのカバレッジと純度の観点から、その効果を示すと同時に、他の最先端ソリューションよりも優れた実行効率を強調している。
関連論文リスト
- Certifiably robust malware detectors by design [48.367676529300276]
設計によるロバストなマルウェア検出のための新しいモデルアーキテクチャを提案する。
すべての堅牢な検出器を特定の構造に分解することができ、それを経験的に堅牢なマルウェア検出器の学習に適用できることを示す。
我々のフレームワークERDALTはこの構造に基づいている。
論文 参考訳(メタデータ) (2025-08-10T09:19:29Z) - Relation-aware based Siamese Denoising Autoencoder for Malware Few-shot Classification [6.7203034724385935]
マルウェアが目に見えないゼロデイエクスプロイトを採用した場合、従来のセキュリティ対策では検出できない可能性がある。
既存の機械学習手法は、特定の時代遅れのマルウェアサンプルに基づいて訓練されており、新しいマルウェアの機能に適応するのに苦労する可能性がある。
そこで我々は,より正確な類似性確率を計算するために,関係認識型埋め込みを用いた新しいシームズニューラルネットワーク(SNN)を提案する。
論文 参考訳(メタデータ) (2024-11-21T11:29:10Z) - Deep Learning Fusion For Effective Malware Detection: Leveraging Visual Features [12.431734971186673]
本研究では,マルウェアの実行可能量の異なるモードで学習した畳み込みニューラルネットワークモデルを融合する能力について検討する。
我々は3種類の視覚的マルウェアを利用した新しいマルチモーダル融合アルゴリズムを提案している。
提案した戦略は、与えられたデータセット内のマルウェアを識別する際の検出レート1.00(0-1)である。
論文 参考訳(メタデータ) (2024-05-23T08:32:40Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
現在の透かし検出アルゴリズムは、透かし生成プロセスで使用される秘密鍵を必要としており、公開検出中にセキュリティ違反や偽造の影響を受ける。
両段階で同じキーを使用するのではなく、2つの異なるニューラルネットワークを用いて透かしの生成と検出を行う。
論文 参考訳(メタデータ) (2023-07-30T13:43:27Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Reliable Malware Analysis and Detection using Topology Data Analysis [12.031113181911627]
マルウェアはますます複雑になり、さまざまなインフラストラクチャや個人用デバイスをターゲットにしたネットワークに広まっている。
マルウェアを防御するために、最近の研究はシグネチャと機械学習に基づく異なるテクニックを提案している。
論文 参考訳(メタデータ) (2022-11-03T00:46:52Z) - Flexible Android Malware Detection Model based on Generative Adversarial
Networks with Code Tensor [7.417407987122394]
既存のマルウェア検出方法は、既存の悪意のあるサンプルのみを対象としている。
本稿では,マルウェアとその変異を効率的に検出する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-25T03:20:34Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - Towards an Automated Pipeline for Detecting and Classifying Malware
through Machine Learning [0.0]
Windows Portable Executable File (PE) を分類できるマルウェア分類パイプラインを提案する。
入力PEサンプルが与えられた場合、悪意または良性のいずれかに分類される。
悪意のある場合、パイプラインは脅威タイプ、家族、行動を確立するためにさらに分析する。
論文 参考訳(メタデータ) (2021-06-10T10:07:50Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。