論文の概要: PC-UNet: An Enforcing Poisson Statistics U-Net for Positron Emission Tomography Denoising
- arxiv url: http://arxiv.org/abs/2510.14995v1
- Date: Fri, 10 Oct 2025 04:26:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 20:17:34.304433
- Title: PC-UNet: An Enforcing Poisson Statistics U-Net for Positron Emission Tomography Denoising
- Title(参考訳): PC-UNet: ポジトロン放射トモグラフィーのためのPoisson Statistics U-Net
- Authors: Yang Shi, Jingchao Wang, Liangsi Lu, Mingxuan Huang, Ruixin He, Yifeng Xie, Hanqian Liu, Minzhe Guo, Yangyang Liang, Weipeng Zhang, Zimeng Li, Xuhang Chen,
- Abstract要約: ポジトロン・エミッション・トモグラフィ(PET)は医学において重要であるが、その臨床利用は高い信号-雑音比の線量によって制限されている。
画像の忠実度を改善するため,新しいPoisson Variance and Mean Consistency Loss (PVMC-Loss) を用いたPoisson Consistent U-Net (PC-UNet) モデルを提案する。
- 参考スコア(独自算出の注目度): 11.375263699816339
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Positron Emission Tomography (PET) is crucial in medicine, but its clinical use is limited due to high signal-to-noise ratio doses increasing radiation exposure. Lowering doses increases Poisson noise, which current denoising methods fail to handle, causing distortions and artifacts. We propose a Poisson Consistent U-Net (PC-UNet) model with a new Poisson Variance and Mean Consistency Loss (PVMC-Loss) that incorporates physical data to improve image fidelity. PVMC-Loss is statistically unbiased in variance and gradient adaptation, acting as a Generalized Method of Moments implementation, offering robustness to minor data mismatches. Tests on PET datasets show PC-UNet improves physical consistency and image fidelity, proving its ability to integrate physical information effectively.
- Abstract(参考訳): ポジトロン・エミッション・トモグラフィー(PET)は医学において重要であるが、その臨床利用は放射線曝露の増加による高信号-雑音比の線量により制限されている。
服用量を減らすことでポアソンノイズが増加し、現行の脱臭法では処理できないため、歪みやアーチファクトが生じる。
画像の忠実度を向上させるために物理データを組み込んだ新しいPoisson Variance and Mean Consistency Loss (PVMC-Loss) を用いたPoisson Consistent U-Net (PC-UNet) モデルを提案する。
PVMC-Lossは、分散と勾配適応に統計的に偏りがなく、一般的なモーメントの方法として機能し、小さなデータミスマッチに対して堅牢性を提供する。
PETデータセット上でのテストでは、PC-UNetは物理的一貫性と画像の忠実性を改善し、物理的情報を効果的に統合する能力を示す。
関連論文リスト
- An efficient approach with theoretical guarantees to simultaneously reconstruct activity and attenuation sinogram for TOF-PET [6.491602790776125]
ポジトロン・エミッション・トモグラフィ(PET)では、身体内の定量的に正確な活動地図(軌跡分布)を得るために減衰補正を行うことが不可欠である。
飛行時間(TOF)-PETエミッションデータのみから活動と減衰のシングラムを同時に再構築する数学的モデルを提案する。
論文 参考訳(メタデータ) (2025-10-15T14:01:03Z) - Volumetric Conditional Score-based Residual Diffusion Model for PET/MR Denoising [13.694516702501097]
PETイメージングは、分子および生理過程の定量的評価を提供する強力なモダリティである。
PET画像における内在性高ノイズレベルからPET脱ノイズの必要性が生じる。
条件スコアに基づくResidual Diffusion(CSRD)モデルでは,高精細なスコア関数と3Dパッチワイドトレーニング戦略を取り入れることで,これらの問題に対処する。
論文 参考訳(メタデータ) (2024-09-30T19:35:22Z) - Deep kernel representations of latent space features for low-dose PET-MR imaging robust to variable dose reduction [0.09362267584678274]
低線量ポジトロン放射トモグラフィ(PET)画像再構成法は、画像モダリティとしてPETを大幅に改善する可能性がある。
ディープラーニングは、画像再構成問題に事前情報を組み込んで、妥協された信号から定量的に正確な画像を生成する、有望な手段を提供する。
本稿では,カーネル表現を頑健に表現した深層潜伏空間の特徴を明示的にモデル化し,これまで見られなかった線量削減係数に対して頑健な性能を提供する手法を提案する。
論文 参考訳(メタデータ) (2024-09-10T03:57:31Z) - Diffusion Transformer Model With Compact Prior for Low-dose PET Reconstruction [7.320877150436869]
低線量PET画像の再構成品質を高めるために,JCP(Joint compact prior)により導かれる拡散変圧器モデルを提案する。
DTMは拡散モデルの強力な分布マッピング能力と変圧器の容量を組み合わせて長距離依存を捉える。
本手法は放射線曝露リスクを軽減するだけでなく,早期診断や患者管理のためのPETイメージングツールも提供する。
論文 参考訳(メタデータ) (2024-07-01T03:54:43Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - Robust T-Loss for Medical Image Segmentation [56.524774292536264]
本稿では,医用画像分割のための新しいロバストな損失関数T-Lossを提案する。
提案した損失は、Student-t分布の負のログ類似度に基づいており、データ内の外れ値の処理を効果的に行うことができる。
実験の結果,T-Lossは2つの医療データセットのダイススコアにおいて従来の損失関数よりも優れていた。
論文 参考訳(メタデータ) (2023-06-01T14:49:40Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - FP-Diffusion: Improving Score-based Diffusion Models by Enforcing the
Underlying Score Fokker-Planck Equation [72.19198763459448]
雑音が増大する傾向にあるデータ密度に対応する雑音条件スコア関数の族を学習する。
これらの摂動データ密度は、密度の時空間進化を管理する偏微分方程式(PDE)であるフォッカー・プランク方程式(Fokker-Planck equation, FPE)によって結合される。
我々は、摂動データ密度の雑音条件スコアを特徴付けるスコアFPEと呼ばれる対応する方程式を導出する。
論文 参考訳(メタデータ) (2022-10-09T16:27:25Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - X-ray Photon-Counting Data Correction through Deep Learning [3.535670189300134]
深層ニューラルネットワークを用いたPCDデータ補正手法を提案する。
本研究ではまず,電荷分割とパルス蓄積効果を取り入れた完全シミュレーションモデルを構築した。
シミュレーションされたPCDデータと地上の真理のデータは、PCDデータ修正のために特別に設計されたディープ・敵ネットワークに送られる。
論文 参考訳(メタデータ) (2020-07-06T23:29:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。