論文の概要: AB-UPT for Automotive and Aerospace Applications
- arxiv url: http://arxiv.org/abs/2510.15808v1
- Date: Fri, 17 Oct 2025 16:40:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 20:17:34.716543
- Title: AB-UPT for Automotive and Aerospace Applications
- Title(参考訳): 自動車・航空宇宙用AB-UPT
- Authors: Benedikt Alkin, Richard Kurle, Louis Serrano, Dennis Just, Johannes Brandstetter,
- Abstract要約: Anchored-Branched Universal Physics Transformers (AB-UPT) は、自動車の流体力学シミュレーションを再現する強力な能力を示している。
AB-UPTのユースケースを実証的に評価した2つの新しいデータセットを追加し、高品質なデータ生成と最先端のニューラルサロゲートを組み合わせる。
AB-UPTは、単純な等方的テセルレート幾何学表現から、数秒以内の統合空力のほぼ完全な予測値を得る。
- 参考スコア(独自算出の注目度): 23.03293469767775
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The recently proposed Anchored-Branched Universal Physics Transformers (AB-UPT) shows strong capabilities to replicate automotive computational fluid dynamics simulations requiring orders of magnitudes less compute than traditional numerical solvers. In this technical report, we add two new datasets to the body of empirically evaluated use-cases of AB-UPT, combining high-quality data generation with state-of-the-art neural surrogates. Both datasets were generated with the Luminary Cloud platform containing automotives (SHIFT-SUV) and aircrafts (SHIFT-Wing). We start by detailing the data generation. Next, we show favorable performances of AB-UPT against previous state-of-the-art transformer-based baselines on both datasets, followed by extensive qualitative and quantitative evaluations of our best AB-UPT model. AB-UPT shows strong performances across the board. Notably, it obtains near perfect prediction of integrated aerodynamic forces within seconds from a simple isotopically tesselate geometry representation and is trainable within a day on a single GPU, paving the way for industry-scale applications.
- Abstract(参考訳): 最近提案されたAnchored-Branched Universal Physics Transformers (AB-UPT) は、従来の数値解法よりも桁違いの計算を必要とする自動計算流体力学シミュレーションを再現する強力な能力を示している。
この技術報告では、AB-UPTのユースケースを実証的に評価した2つの新しいデータセットを追加し、高品質なデータ生成と最先端のニューラルサロゲートを組み合わせる。
両方のデータセットは、自動車(SHIFT-SUV)と航空機(SHIFT-Wing)を含むLuminary Cloudプラットフォームで生成された。
データ生成の詳細から始めます。
次に,AB-UPTモデルに対して,従来の最先端トランスフォーマーベースベースラインに対して良好な性能を示し,その後,我々の最良のAB-UPTモデルの定性的および定量的評価を行った。
AB-UPTはボード全体で強いパフォーマンスを示している。
特に、単純な等方的テセレート幾何学表現から数秒以内に統合された空気力のほぼ完全な予測を取得し、1日以内に1つのGPUでトレーニング可能であり、業界規模のアプリケーションへの道を開くことができる。
関連論文リスト
- DrivAer Transformer: A high-precision and fast prediction method for vehicle aerodynamic drag coefficient based on the DrivAerNet++ dataset [1.184330339427731]
本研究では、DrivAer Transformerと呼ばれるポイントクラウド学習フレームワークを提案する。
DAT構造はDrivAerNet++データセットを使用しており、産業標準の3D車両形状の高忠実なCFDデータを含んでいる。
この枠組みは車両設計プロセスの加速と開発効率の向上が期待されている。
論文 参考訳(メタデータ) (2025-04-11T02:50:38Z) - SMPLest-X: Ultimate Scaling for Expressive Human Pose and Shape Estimation [81.36747103102459]
表現的人間のポーズと形状推定(EHPS)は、身体、手、顔の動きを多数の応用で統合する。
現在の最先端の手法は、限定されたデータセット上で革新的なアーキテクチャ設計を訓練することに焦点を当てている。
本稿では,EHPSのスケールアップが一般基盤モデルのファミリに与える影響について検討する。
論文 参考訳(メタデータ) (2025-01-16T18:59:46Z) - A Geometry-Aware Message Passing Neural Network for Modeling Aerodynamics over Airfoils [61.60175086194333]
空気力学は航空宇宙工学の重要な問題であり、しばしば翼のような固体物と相互作用する流れを伴う。
本稿では, 固体物体上の非圧縮性流れのモデル化について考察する。
ジオメトリを効果的に組み込むため,メッシュ表現に翼形状を効率よく,かつ効率的に統合するメッセージパッシング方式を提案する。
これらの設計選択は、純粋にデータ駆動の機械学習フレームワークであるGeoMPNNにつながり、NeurIPS 2024 ML4CFDコンペティションで最優秀学生賞を受賞し、総合で4位となった。
論文 参考訳(メタデータ) (2024-12-12T16:05:39Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Visual Fourier Prompt Tuning [63.66866445034855]
本稿では,大規模なトランスフォーマーモデルに適用するための汎用的で効果的な方法として,Visual Fourier Prompt Tuning (VFPT)法を提案する。
提案手法では,高速フーリエ変換を即時埋め込みに取り入れ,空間領域情報と周波数領域情報の両方を調和的に検討する。
提案手法は,2つのベンチマークにおいて,現状のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-11-02T18:18:35Z) - DrivAerNet++: A Large-Scale Multimodal Car Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks [25.00264553520033]
DrivAerNet++は、高忠実度計算流体力学(CFD)シミュレーションをモデルとした8000の多種多様な自動車設計で構成されている。
データセットには、ファストバック、ノッチバック、エステートバックといった多様な車種が含まれており、内燃機関と電気自動車の両方を表す車体と車輪のデザインが異なる。
このデータセットは、データ駆動設計最適化、生成モデリング、代理モデルトレーニング、CFDシミュレーションアクセラレーション、幾何学的分類を含む幅広い機械学習アプリケーションをサポートしている。
論文 参考訳(メタデータ) (2024-06-13T23:19:48Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
我々は,18の事前学習トランスフォーマーモデルから予測した29のデータセットを個別のテスト例で評価した。
Quoref、HellaSwag、MC-TACOは最先端のモデルを区別するのに最適である。
また、QAMRやSQuAD2.0のようなQAデータセットに使用されるスパン選択タスク形式は、強いモデルと弱いモデルとの差別化に有効である。
論文 参考訳(メタデータ) (2021-06-01T22:33:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。