論文の概要: A Geometry-Aware Message Passing Neural Network for Modeling Aerodynamics over Airfoils
- arxiv url: http://arxiv.org/abs/2412.09399v2
- Date: Fri, 13 Dec 2024 07:40:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 11:42:54.231697
- Title: A Geometry-Aware Message Passing Neural Network for Modeling Aerodynamics over Airfoils
- Title(参考訳): 翼上空力モデリングのための幾何学的メッセージパッシングニューラルネットワーク
- Authors: Jacob Helwig, Xuan Zhang, Haiyang Yu, Shuiwang Ji,
- Abstract要約: 空気力学は航空宇宙工学の重要な問題であり、しばしば翼のような固体物と相互作用する流れを伴う。
本稿では, 固体物体上の非圧縮性流れのモデル化について考察する。
ジオメトリを効果的に組み込むため,メッシュ表現に翼形状を効率よく,かつ効率的に統合するメッセージパッシング方式を提案する。
これらの設計選択は、純粋にデータ駆動の機械学習フレームワークであるGeoMPNNにつながり、NeurIPS 2024 ML4CFDコンペティションで最優秀学生賞を受賞し、総合で4位となった。
- 参考スコア(独自算出の注目度): 61.60175086194333
- License:
- Abstract: Computational modeling of aerodynamics is a key problem in aerospace engineering, often involving flows interacting with solid objects such as airfoils. Deep surrogate models have emerged as purely data-driven approaches that learn direct mappings from simulation conditions to solutions based on either simulation or experimental data. Here, we consider modeling of incompressible flows over solid objects, wherein geometric structures are a key factor in determining aerodynamics. To effectively incorporate geometries, we propose a message passing scheme that efficiently and expressively integrates the airfoil shape with the mesh representation. Under this framework, we first obtain a representation of the geometry in the form of a latent graph on the airfoil surface. We subsequently propagate this representation to all collocation points through message passing on a directed, bipartite graph. We demonstrate that this framework supports efficient training by downsampling the solution mesh while avoiding distribution shifts at test time when evaluated on the full mesh. To enable our model to be able to distinguish between distinct spatial regimes of dynamics relative to the airfoil, we represent mesh points in both a leading edge and trailing edge coordinate system. We further enhance the expressiveness of our coordinate system representations by embedding our hybrid Polar-Cartesian coordinates using sinusoidal and spherical harmonics bases. We additionally find that a change of basis to canonicalize input representations with respect to inlet velocity substantially improves generalization. Altogether, these design choices lead to a purely data-driven machine learning framework known as GeoMPNN, which won the Best Student Submission award at the NeurIPS 2024 ML4CFD Competition, placing 4th overall. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS).
- Abstract(参考訳): 空気力学の計算モデリングは航空宇宙工学の重要な問題であり、しばしば翼のような固体物体と相互作用する流れを伴う。
ディープサロゲートモデルは、シミュレーション条件からシミュレーションデータまたは実験データに基づくソリューションへの直接マッピングを学ぶ純粋にデータ駆動のアプローチとして登場した。
本稿では, 固体物体上の非圧縮性流れのモデル化について考察する。
ジオメトリを効果的に組み込むため,メッシュ表現に翼形状を効率よく,かつ効率的に統合するメッセージパッシング方式を提案する。
この枠組みの下では、まず、翼面上の潜在グラフの形で幾何学の表現を得る。
その後、有向二部グラフ上のメッセージパッシングを通じて、この表現を全コロケーションポイントに伝播する。
このフレームワークは、フルメッシュで評価された場合、テスト時の分散シフトを回避しながら、ソリューションメッシュのサンプリングによる効率的なトレーニングをサポートすることを実証する。
本モデルでは,翼面に対して異なる空間的状態の力学を区別できるように,前縁座標系と後縁座標系の両方においてメッシュ点を表現できる。
正弦波と球面の調和基底を用いたハイブリッド極-モンテカルロ座標を埋め込み、座標系表現の表現性をさらに向上する。
さらに,入力表現を入力速度に対して正準化するための基底の変化は,一般化を著しく向上させることがわかった。
さらに、これらの設計選択により、GeoMPNNと呼ばれる純粋にデータ駆動の機械学習フレームワークが実現し、NeurIPS 2024 ML4CFDコンペティションで最優秀学生賞を受賞し、総合で4位となった。
私たちのコードはAIRSライブラリ(https://github.com/divelab/AIRS)の一部として公開されています。
関連論文リスト
- Equation-informed data-driven identification of flow budgets and dynamics [0.0]
本稿では,フロークラスタリングのための新しいハイブリッド手法を提案する。
それは、方程式に基づく特徴を持つシステムの各サンプルポイントを特徴づけることから成り立っている。
このアルゴリズムは、EulerianフレームワークとLagrangianフレームワークの両方で実装されている。
論文 参考訳(メタデータ) (2024-11-14T15:59:41Z) - SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
本稿では,ニューラルネットワークの出力として,複雑な接続性を持つ多様体多角形メッシュを直接生成する手法を提案する。
私たちの重要なイノベーションは、各メッシュで連続的な遅延接続空間を定義することです。
アプリケーションでは、このアプローチは生成モデルから高品質な出力を得るだけでなく、メッシュ修復のような挑戦的な幾何処理タスクを直接学習することを可能にする。
論文 参考訳(メタデータ) (2024-09-30T17:59:03Z) - Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations [1.1932047172700866]
本稿では,メッシュ領域上での定常流体力学シミュレーションの代理モデルを学習する手法を提案する。
提案したモデルは, 異なる流れ条件に対して非構造領域に直接適用することができる。
顕著なことに、RANS超音速翼データセット上の高忠実度解法よりも5桁高速な推論を行うことができる。
論文 参考訳(メタデータ) (2024-07-29T11:48:44Z) - Flexible Isosurface Extraction for Gradient-Based Mesh Optimization [65.76362454554754]
本研究では、勾配に基づくメッシュ最適化について考察し、スカラー場の等曲面として表現することで、3次元表面メッシュを反復的に最適化する。
我々は、幾何学的、視覚的、あるいは物理的目的に対して未知のメッシュを最適化するために特別に設計された、異面表現であるFlexiCubesを紹介する。
論文 参考訳(メタデータ) (2023-08-10T06:40:19Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - Eagle: Large-Scale Learning of Turbulent Fluid Dynamics with Mesh
Transformers [23.589419066824306]
流体力学を推定することは、解決するのが非常に難しい。
問題に対する新しいモデル,メソッド,ベンチマークを導入する。
我々の変換器は、既存の合成データセットと実際のデータセットの両方において、最先端のパフォーマンスより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-16T12:59:08Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - Airfoil GAN: Encoding and Synthesizing Airfoils for Aerodynamic Shape
Optimization [9.432375767178284]
本稿では,既存の翼から表現を自動的に学習し,学習した表現を用いて新しい翼を生成する,データ駆動型形状符号化・生成手法を提案する。
我々のモデルは、変分オートエンコーダとジェネレーティブ・アドバーサリアル・ネットワークを組み合わせたニューラルネットワークであるVAEGANに基づいて構築されており、勾配に基づく手法で訓練されている。
論文 参考訳(メタデータ) (2021-01-12T21:25:45Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。