論文の概要: TaintSentinel: Path-Level Randomness Vulnerability Detection for Ethereum Smart Contracts
- arxiv url: http://arxiv.org/abs/2510.18192v1
- Date: Tue, 21 Oct 2025 00:35:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:12.74502
- Title: TaintSentinel: Path-Level Randomness Vulnerability Detection for Ethereum Smart Contracts
- Title(参考訳): TaintSentinel:Ethereumスマートコントラクトのためのパスレベルランダム性脆弱性検出
- Authors: Hadis Rezaei, Ahmed Afif Monrat, Karl Andersson, Francesco Flammini,
- Abstract要約: ブロックチェーン技術の本質的な決定性は、スマートコントラクト内でセキュアな乱数を生成する上で大きな課題となる。
本稿では,スマートコントラクトを実行経路レベルで解析する新たなパスセンシティブな脆弱性検出システムであるTaintSentinelを提案する。
4,844件の実験を行い,既存のツールと比較してTaintSentinelの優れた性能を示した。
- 参考スコア(独自算出の注目度): 2.064923532131528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The inherent determinism of blockchain technology poses a significant challenge to generating secure random numbers within smart contracts, leading to exploitable vulnerabilities, particularly in decentralized finance (DeFi) ecosystems and blockchain-based gaming applications. From our observations, the current state-of-the-art detection tools suffer from inadequate precision while dealing with random number vulnerabilities. To address this problem, we propose TaintSentinel, a novel path sensitive vulnerability detection system designed to analyze smart contracts at the execution path level and gradually analyze taint with domain-specific rules. This paper discusses a solution that incorporates a multi-faceted approach, integrating rule-based taint analysis to track data flow, a dual stream neural network to identify complex vulnerability signatures, and evidence-based parameter initialization to minimize false positives. The system's two-phase operation involves semantic graph construction and taint propagation analysis, followed by pattern recognition using PathGNN and global structural analysis via GlobalGCN. Our experiments on 4,844 contracts demonstrate the superior performance of TaintSentinel relative to existing tools, yielding an F1-score of 0.892, an AUC-ROC of 0.94, and a PRA accuracy of 97%.
- Abstract(参考訳): ブロックチェーン技術の本質的な決定論は、スマートコントラクト内でセキュアな乱数を生成する上で、特に分散型金融(DeFi)エコシステムやブロックチェーンベースのゲームアプリケーションにおいて、悪用可能な脆弱性を生み出すという大きな課題を引き起こします。
我々の観察から、現在の最先端検出ツールは、乱数脆弱性に対処しながら、不適切な精度に悩まされている。
この問題に対処するため、我々は、スマートコントラクトを実行経路レベルで分析し、ドメイン固有のルールで段階的にテナントを分析するように設計された、新しいパスセンシティブな脆弱性検出システムであるTaintSentinelを提案する。
本稿では,多面的アプローチを取り入れたソリューション,データフローを追跡するためのルールベースのテナント解析の統合,複雑な脆弱性シグネチャを識別するデュアルストリームニューラルネットワーク,偽陽性を最小化するためのエビデンスベースのパラメータ初期化について論じる。
このシステムの2フェーズ動作はセマンティックグラフ構築とテント伝播解析を伴い、PathGNNを用いたパターン認識とGlobalGCNによるグローバル構造解析を行う。
4,844件の実験では,既存のツールと比較してTintSentinelの方が優れた性能を示し,F1スコアは0.892,AUC-ROCは0.94,PRAは97%であった。
関連論文リスト
- ParaVul: A Parallel Large Language Model and Retrieval-Augmented Framework for Smart Contract Vulnerability Detection [43.41293570032631]
ParaVulは、スマートコントラクト脆弱性検出の信頼性と精度を向上させるための、検索強化フレームワークである。
LLM微調整のためのスパースローランド適応(SLoRA)を開発した。
脆弱性契約データセットを構築し,RAG(Retrieval-Augmented Generation)システムを開発した。
論文 参考訳(メタデータ) (2025-10-20T03:23:41Z) - AI-Based Vulnerability Analysis of NFT Smart Contracts [6.378351117969227]
本研究では,NFTスマートコントラクトの脆弱性を検出するAI駆動型アプローチを提案する。
我々は16,527のパブリックなスマートコントラクトコードを収集し、これらを5つの脆弱性カテゴリに分類した: Risky Mutable Proxy, ERC-721 Reentrancy, Unlimited Minting, Missing Requirements, Public Burn。
ランダムデータ/機能サンプリングとマルチツリー統合によるロバスト性向上のために,ランダムフォレストモデルを実装した。
論文 参考訳(メタデータ) (2025-04-18T08:55:31Z) - MOS: Towards Effective Smart Contract Vulnerability Detection through Mixture-of-Experts Tuning of Large Language Models [16.16186929130931]
スマートコントラクトの脆弱性は、ブロックチェーンシステムに重大なセキュリティリスクをもたらす。
本稿では,大規模言語モデルのミックス・オブ・エキスパート・チューニング(MOE-Tuning)に基づくスマートコントラクト脆弱性検出フレームワークを提案する。
実験の結果、MOSはF1のスコアが6.32%、精度が4.80%の平均的な改善で既存の手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2025-04-16T16:33:53Z) - SmartBugBert: BERT-Enhanced Vulnerability Detection for Smart Contract Bytecode [0.7018579932647147]
本稿では,BERTに基づくディープラーニングと制御フローグラフ(CFG)解析を組み合わせて,バイトコードから直接脆弱性を検出する新しいアプローチであるSmartBugBertを紹介する。
提案手法は,まずスマートコントラクトバイトコードを最適化されたオペコードシーケンスに分解し,TF-IDFを用いて意味的特徴を抽出し,実行ロジックをキャプチャするために制御フローグラフを構築し,ターゲット分析のために脆弱なCFGフラグメントを分離する。
論文 参考訳(メタデータ) (2025-04-07T12:30:12Z) - Lie Detector: Unified Backdoor Detection via Cross-Examination Framework [68.45399098884364]
半正直な設定で一貫したバックドア検出フレームワークを提案する。
本手法は,SoTAベースラインよりも5.4%,1.6%,11.9%の精度で検出性能が向上する。
特に、マルチモーダルな大規模言語モデルにおいて、バックドアを効果的に検出するのは、これが初めてである。
論文 参考訳(メタデータ) (2025-03-21T06:12:06Z) - Vulnerability-Hunter: An Adaptive Feature Perception Attention Network for Smart Contract Vulnerabilities [4.487191851300675]
スマートコントラクトコード全体を包括的にスキャンする動的重みを持つ特徴認識モジュールを備えた,新たな脆弱性検出モデルであるAFPNetを提案する。
脆弱性ラベル付き大規模データセットにおけるAFPNetの評価を行う。
論文 参考訳(メタデータ) (2024-07-07T10:13:41Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Combining Graph Neural Networks with Expert Knowledge for Smart Contract
Vulnerability Detection [37.7763374870026]
既存の契約のセキュリティ分析の取り組みは、労働集約的でスケーリング不能な専門家によって定義された厳格なルールに依存している。
本稿では,正規化グラフからグラフ特徴を抽出する新たな時間的メッセージ伝達ネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-24T13:16:30Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。