論文の概要: Joint Optimization of Cooperation Efficiency and Communication Covertness for Target Detection with AUVs
- arxiv url: http://arxiv.org/abs/2510.18225v1
- Date: Tue, 21 Oct 2025 02:14:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:12.820308
- Title: Joint Optimization of Cooperation Efficiency and Communication Covertness for Target Detection with AUVs
- Title(参考訳): AUVを用いた目標検出のための協調効率と通信被覆性の共同最適化
- Authors: Xueyao Zhang, Bo Yang, Zhiwen Yu, Xuelin Cao, Wei Xiang, Bin Guo, Liang Wang, Billy Pik Lik Lau, George C. Alexandropoulos, Jun Luo, Mérouane Debbah, Zhu Han, Chau Yuen,
- Abstract要約: 本稿では,自律型水中車両(AUV)を用いた水中協調目標検出について検討する。
まず,共同軌道と電力制御の最適化問題を定式化し,それを解決するための革新的な階層的行動管理フレームワークを提案する。
集中学習と分散実行のパラダイムの下で,我々の目標検出フレームワークは,エネルギーとモビリティの制約を満たすとともに,適応的なカバート協調を可能にする。
- 参考スコア(独自算出の注目度): 105.81167650318054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates underwater cooperative target detection using autonomous underwater vehicles (AUVs), with a focus on the critical trade-off between cooperation efficiency and communication covertness. To tackle this challenge, we first formulate a joint trajectory and power control optimization problem, and then present an innovative hierarchical action management framework to solve it. According to the hierarchical formulation, at the macro level, the master AUV models the agent selection process as a Markov decision process and deploys the proximal policy optimization algorithm for strategic task allocation. At the micro level, each selected agent's decentralized decision-making is modeled as a partially observable Markov decision process, and a multi-agent proximal policy optimization algorithm is used to dynamically adjust its trajectory and transmission power based on its local observations. Under the centralized training and decentralized execution paradigm, our target detection framework enables adaptive covert cooperation while satisfying both energy and mobility constraints. By comprehensively modeling the considered system, the involved signals and tasks, as well as energy consumption, theoretical insights and practical solutions for the efficient and secure operation of multiple AUVs are provided, offering significant implications for the execution of underwater covert communication tasks.
- Abstract(参考訳): 本稿では、自律型水中車両(AUV)を用いた水中協調目標検出について検討し、協調効率と通信の秘密性との間の重要なトレードオフに着目した。
この課題に対処するために、まず共同軌道と電力制御最適化の問題を定式化し、それを解決するための革新的な階層的行動管理フレームワークを提案する。
階層的な定式化によれば、マクロレベルでは、マスターAUVはエージェント選択プロセスをマルコフ決定プロセスとしてモデル化し、戦略的なタスク割り当てのための近似ポリシー最適化アルゴリズムをデプロイする。
マイクロレベルでは、選択された各エージェントの分散意思決定を部分的に観測可能なマルコフ決定プロセスとしてモデル化し、その局所的な観測に基づいて、その軌道と送信電力を動的に調整するためにマルチエージェント近似最適化アルゴリズムを用いる。
集中学習と分散実行のパラダイムの下で,我々の目標検出フレームワークは,エネルギーとモビリティの制約を満たすとともに,適応的なカバート協調を可能にする。
検討されたシステムを包括的にモデル化することにより、複数のAUVの効率よく安全な運用のためのエネルギー消費、理論的洞察、実用的なソリューションが提供され、水中の秘密通信タスクの実行に重要な意味を持つ。
関連論文リスト
- Strategic Coordination for Evolving Multi-agent Systems: A Hierarchical Reinforcement and Collective Learning Approach [0.0]
強化学習は、シーケンシャルな意思決定をモデル化する方法を提供する。
エージェントは、MARLを使用して高レベル戦略を採り、アクションスペース削減のためのプランをグループ化する。
低レベルの集団学習層は、効率的で分散化された協調的な決定を保証する。
論文 参考訳(メタデータ) (2025-09-22T17:58:45Z) - Cooperative Target Detection with AUVs: A Dual-Timescale Hierarchical MARDL Approach [59.81681228738068]
敵の環境では、効率的な協調を実現するとともに、隠蔽活動を確保することが、水中での協力ミッションにとって重要な課題である。
本稿では,新しい時間スケール階層型マルチエージェント・ポリシー最適化フレームワークを提案する。
提案手法は, 高速収束を実現し, ベンチマークアルゴリズムの性能を向上し, 長期協調効率を最大化し, 隠蔽動作の確保を図る。
論文 参考訳(メタデータ) (2025-09-16T09:31:32Z) - Hierarchical Reinforcement Learning for Optimal Agent Grouping in Cooperative Systems [0.4759142872591625]
本稿では,協調型マルチエージェントシステムにおけるエージェントグループ化やペアリングの問題に対処するための階層型強化学習(RL)手法を提案する。
階層的なRLフレームワークを用いることで、グループ化の高レベル決定と低レベルのエージェントのアクションを区別する。
エージェント間の均質性や協調性を扱うために、置換型ニューラルネットワークを導入し、効果的な協調を可能にする。
論文 参考訳(メタデータ) (2025-01-11T14:22:10Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
低高度経済は、コミュニケーションやセンシングなどの分野で発展する大きな可能性を秘めている。
本稿では,SAGINにおけるマルチUAV協調タスクスケジューリング問題に対処するため,クラスタリングに基づく多エージェントDeep Deterministic Policy Gradient (CMADDPG)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-14T06:17:33Z) - A Local Information Aggregation based Multi-Agent Reinforcement Learning for Robot Swarm Dynamic Task Allocation [4.144893164317513]
分散化された部分観測可能なマルコフ決定プロセス(Dec_POMDP)を用いた新しいフレームワークを提案する。
我々の方法論の核心は、局所情報集約多元決定政策勾配(LIA_MADDPG)アルゴリズムである。
実験により,LIAモジュールは様々なCTDEベースのMARL法にシームレスに統合可能であることが示された。
論文 参考訳(メタデータ) (2024-11-29T07:53:05Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
非直交多重アクセス(Noma)により、複数のユーザが同じ周波数帯域を共有でき、同時に再構成可能なインテリジェントサーフェス(STAR-RIS)を送信および反射することができる。
STAR-RISを屋内に展開することは、干渉緩和、電力消費、リアルタイム設定における課題を提示する。
複数のアクセスポイント(AP)、STAR-RIS、NOMAを利用した新しいネットワークアーキテクチャが屋内通信のために提案されている。
論文 参考訳(メタデータ) (2024-06-19T07:17:04Z) - Distributed Autonomous Swarm Formation for Dynamic Network Bridging [40.27919181139919]
離散化された部分観測可能なマルコフ決定過程(Dec-POMDP)における動的ネットワークブリッジ問題について定式化する。
グラフ畳み込み強化学習(DGN)に基づく問題に対するマルチエージェント強化学習(MARL)アプローチを提案する。
提案手法はシミュレーション環境で評価し,将来性を示す集中型ベースラインと比較した。
論文 参考訳(メタデータ) (2024-04-02T01:45:03Z) - Imitation Learning based Alternative Multi-Agent Proximal Policy
Optimization for Well-Formed Swarm-Oriented Pursuit Avoidance [15.498559530889839]
本稿では,分散学習に基づく代替的マルチエージェント・プロキシ・ポリシー最適化(IA-MAPPO)アルゴリズムを提案する。
擬似学習を利用して生成コントローラを分散化し,通信オーバーヘッドを低減し,スケーラビリティを向上させる。
シミュレーションの結果,IA-MAPPOの有効性が検証され,広範囲なアブレーション実験により,通信オーバーヘッドが著しく減少する集中型解に匹敵する性能が示された。
論文 参考訳(メタデータ) (2023-11-06T06:58:16Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
本稿では,モンテカルロ木探索に基づくトレーニング可能なオンライン分散計画アルゴリズムを提案する。
深層学習と畳み込みニューラルネットワークを用いて正確なポリシー近似を作成可能であることを示す。
論文 参考訳(メタデータ) (2020-03-19T13:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。