論文の概要: FnRGNN: Distribution-aware Fairness in Graph Neural Network
- arxiv url: http://arxiv.org/abs/2510.19257v1
- Date: Wed, 22 Oct 2025 05:29:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:15.138582
- Title: FnRGNN: Distribution-aware Fairness in Graph Neural Network
- Title(参考訳): FnRGNN:グラフニューラルネットワークにおける分布認識公正性
- Authors: Soyoung Park, Sungsu Lim,
- Abstract要約: グラフニューラルネットワーク(GNN)は、構造化されたデータから学習する上で優れていますが、回帰タスクの公平性はまだ未調査です。
我々は,GNNに基づくノード回帰のための公平性を考慮した内部処理フレームワークFnRGNNを提案する。
- 参考スコア(独自算出の注目度): 4.013463458124476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) excel at learning from structured data, yet fairness in regression tasks remains underexplored. Existing approaches mainly target classification and representation-level debiasing, which cannot fully address the continuous nature of node-level regression. We propose FnRGNN, a fairness-aware in-processing framework for GNN-based node regression that applies interventions at three levels: (i) structure-level edge reweighting, (ii) representation-level alignment via MMD, and (iii) prediction-level normalization through Sinkhorn-based distribution matching. This multi-level strategy ensures robust fairness under complex graph topologies. Experiments on four real-world datasets demonstrate that FnRGNN reduces group disparities without sacrificing performance. Code is available at https://github.com/sybeam27/FnRGNN.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、構造化されたデータから学習する上で優れていますが、回帰タスクの公平性はまだ未調査です。
既存のアプローチは主に、ノードレベルの回帰の連続的な性質に完全に対処できない、分類と表現レベルのデバイアスを対象とする。
提案するFnRGNNは、GNNベースのノード回帰のためのフェアネス対応のインプロセッシングフレームワークで、3つのレベルで介入を適用する。
(i)構造レベルのエッジ再重み付け
(二)MDDによる表現レベルのアライメント、及び
3)シンクホーン分布マッチングによる予測レベルの正規化。
このマルチレベル戦略は、複雑なグラフトポロジーの下で堅牢な公正性を保証する。
4つの実世界のデータセットの実験により、FnRGNNはパフォーマンスを犠牲にすることなく、グループ間の格差を減少させることを示した。
コードはhttps://github.com/sybeam27/FnRGNNで入手できる。
関連論文リスト
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - Rethinking Fair Graph Neural Networks from Re-balancing [26.70771023446706]
単純な再分散手法は、既存の公正なGNN手法と容易に一致するか、追い越すことができる。
本稿では,グループバランスによるGNNの不公平さを軽減するために,再バランシングによるFairGB,Fair Graph Neural Networkを提案する。
論文 参考訳(メタデータ) (2024-07-16T11:39:27Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
グラフニューラルネットワーク(GNN)の統一最適化フレームワーク内で設計されたtextsfFair textsfMessage textsfPassing(FMP)を提案する。
FMPでは、アグリゲーションがまず隣人の情報を活用するために採用され、バイアス軽減ステップにより、人口集団ノードのプレゼンテーションセンタが明示的に統合される。
ノード分類タスクの実験により、提案されたFMPは、実世界の3つのデータセットの公平性と正確性の観点から、いくつかのベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-19T18:00:15Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - ResNorm: Tackling Long-tailed Degree Distribution Issue in Graph Neural
Networks via Normalization [80.90206641975375]
本稿では,正規化によるGNNの性能向上に焦点をあてる。
グラフ中のノード次数の長期分布を調べることにより、GNNの新しい正規化法を提案する。
ResNormの$scale$操作は、尾ノードの精度を向上させるために、ノード単位の標準偏差(NStd)分布を再設定する。
論文 参考訳(メタデータ) (2022-06-16T13:49:09Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Improving the Training of Graph Neural Networks with Consistency
Regularization [9.239633445211574]
グラフニューラルネットワークの性能向上には,一貫性の正則化が有効かを検討する。
整合正則化法を2つの最先端GNNと組み合わせ、ogbn-productsデータセット上で実験を行う。
一貫性の正則化により、ogbn-productsデータセットでは、最先端のGNNのパフォーマンスが0.3%向上する。
論文 参考訳(メタデータ) (2021-12-08T14:51:30Z) - Power Flow Balancing with Decentralized Graph Neural Networks [4.812718493682454]
汎用グリッド内の電力フローのバランスをとるために,グラフニューラルネットワーク(GNN)に基づくエンドツーエンドフレームワークを提案する。
提案するフレームワークは,ディープラーニングに基づく他の解法と比較して効率的であり,グリッドコンポーネントの物理量だけでなくトポロジにも頑健である。
論文 参考訳(メタデータ) (2021-11-03T12:14:56Z) - Learning Hierarchical Graph Neural Networks for Image Clustering [81.5841862489509]
本稿では,画像の集合を未知の個数にクラスタリングする方法を学ぶ階層型グラフニューラルネットワーク(GNN)モデルを提案する。
我々の階層的なGNNは、階層の各レベルで予測される連結コンポーネントをマージして、次のレベルで新しいグラフを形成するために、新しいアプローチを用いています。
論文 参考訳(メタデータ) (2021-07-03T01:28:42Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから実際に学習する上で、近年大きな進歩を遂げている。
回帰問題と二項分類問題の両方に隠れ層を持つGNNの理論的に基底的な一般化可能性解析を行う。
論文 参考訳(メタデータ) (2020-06-25T00:45:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。