論文の概要: A Climate-Aware Deep Learning Framework for Generalizable Epidemic Forecasting
- arxiv url: http://arxiv.org/abs/2510.19611v1
- Date: Wed, 22 Oct 2025 14:04:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:15.845011
- Title: A Climate-Aware Deep Learning Framework for Generalizable Epidemic Forecasting
- Title(参考訳): 一般化可能なエピデミック予測のための気候を考慮した深層学習フレームワーク
- Authors: Jinpyo Hong, Rachel E. Baker,
- Abstract要約: ForecastNet-XCLは、RSVのリアルタイム監視にアクセスすることなく、気候や時間データに基づいて、100週間前の正確なRSV予測を生成する。
ForecastNet-XCLは、統計ベースライン、個々のニューラルネット、および従来のアンサンブル手法を、内部およびクロスステートのシナリオで確実に上回った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise outbreak forecasting of infectious diseases is essential for effective public health responses and epidemic control. The increased availability of machine learning (ML) methods for time-series forecasting presents an enticing avenue to enhance outbreak forecasting. Though the COVID-19 outbreak demonstrated the value of applying ML models to predict epidemic profiles, using ML models to forecast endemic diseases remains underexplored. In this work, we present ForecastNet-XCL (an ensemble model based on XGBoost+CNN+BiLSTM), a deep learning hybrid framework designed to addresses this gap by creating accurate multi-week RSV forecasts up to 100 weeks in advance based on climate and temporal data, without access to real-time surveillance on RSV. The framework combines high-resolution feature learning with long-range temporal dependency capturing mechanisms, bolstered by an autoregressive module trained on climate-controlled lagged relations. Stochastic inference returns probabilistic intervals to inform decision-making. Evaluated across 34 U.S. states, ForecastNet-XCL reliably outperformed statistical baselines, individual neural nets, and conventional ensemble methods in both within- and cross-state scenarios, sustaining accuracy over extended forecast horizons. Training on climatologically diverse datasets enhanced generalization furthermore, particularly in locations having irregular or biennial RSV patterns. ForecastNet-XCL's efficiency, performance, and uncertainty-aware design make it a deployable early-warning tool amid escalating climate pressures and constrained surveillance resources.
- Abstract(参考訳): 感染症の正確な流行予測は、公衆衛生の効果的な対応と疫病対策に不可欠である。
時系列予測のための機械学習(ML)手法の高可用性向上は、アウトブレイク予測を強化するための魅力的な道を示す。
新型コロナウイルス(COVID-19)の流行は、流行の予測にMLモデルを適用する価値を示したが、内因性疾患の予測にMLモデルを使用した場合、まだ探索が進んでいない。
本稿では,このギャップに対処するために,気候や時間データに基づいて,複数週間の正確なRSV予測を100週間前まで作成し,リアルタイムのRSV監視を行うことなく,そのギャップに対処する学習ハイブリッドフレームワークであるForecastNet-XCL(XGBoost+CNN+BiLSTMをベースとしたアンサンブルモデル)を提案する。
このフレームワークは、高分解能な特徴学習と長期の時間依存性キャプチャ機構を組み合わせることで、気候制御ラッチ関係に基づいて訓練された自己回帰モジュールによって強化される。
確率的推論は確率的間隔を返して意思決定を知らせる。
アメリカ合衆国34州で評価され、フォアキャストNet-XCLは統計ベースライン、個々のニューラルネット、および従来のアンサンブル法を内外のシナリオとクロスステートのシナリオの両方で確実に上回り、予測地平線を超えて精度を保った。
気候学的に多様なデータセットのトレーニングにより、特に不規則なRSVパターンや二年周期のRSVパターンを持つ場所での一般化がさらに促進された。
ForecastNet-XCLの効率性、性能、不確実性を認識した設計は、気候圧力と制限された監視資源の増大の中で、早期警戒ツールとしてデプロイ可能である。
関連論文リスト
- Epidemic-guided deep learning for spatiotemporal forecasting of Tuberculosis outbreak [0.0]
本稿では,先進的な深層学習技術と機械的疫学の原則を融合させるEGDL手法を提案する。
我々のフレームワークは、飽和入射率とグラフラプラシア拡散を付加したネットワーク化された感受性-感染-回復モデル(MN-SIR)に基づいて構築されている。
全国47都道府県と中国本土31県で実施したTB頻度データから,本手法が堅牢かつ正確な予測を行うことを示す。
論文 参考訳(メタデータ) (2025-02-15T12:39:42Z) - OneForecast: A Universal Framework for Global and Regional Weather Forecasting [67.61381313555091]
本稿では,グラフニューラルネットワークに基づくグローバルなネスト型気象予報フレームワーク(OneForecast)を提案する。
動的システムパースペクティブとマルチグリッド理論を組み合わせることで,マルチスケールグラフ構造を構築し,対象領域を密度化する。
動的ゲーティングユニットを用いた適応型メッセージング機構を導入し,ノードとエッジ機能を深く統合し,より正確なイベント予測を行う。
論文 参考訳(メタデータ) (2025-02-01T06:49:16Z) - Neural Networks with LSTM and GRU in Modeling Active Fires in the Amazon [0.0]
本研究は,ブラジルのアマゾンにあるAQUA_M-T衛星によって検出された活動点の歴史的時系列をモデル化し,予測するための包括的方法論を提案する。
このアプローチでは、Long Short-Term Memory(LSTM)とGated Recurrent Unit(GRU)アーキテクチャを組み合わせた混合リカレントニューラルネットワーク(RNN)モデルを採用して、毎日検出されたアクティブファイアスポットの月次蓄積を予測する。
論文 参考訳(メタデータ) (2024-09-04T13:11:59Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - A spatiotemporal machine learning approach to forecasting COVID-19
incidence at the county level in the United States [2.9822184411723645]
本稿では,米国内の郡レベルでの新型コロナウイルスの流行を予測するための,長期記憶アーキテクチャに基づくデータ駆動型モデルであるCOVID-LSTMを提案する。
われわれは、時間的入力として毎週の新規症例数と、Facebookのハンドエンジニアリングによる空間的特徴を用いて、疾患の時間的および空間的拡散を捉えている。
4週間の予測で、私たちのモデルは平均50のケースで、COVIDhubアンサンブルよりも正確です。
論文 参考訳(メタデータ) (2021-09-24T17:40:08Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。