論文の概要: Neural Collapse under Gradient Flow on Shallow ReLU Networks for Orthogonally Separable Data
- arxiv url: http://arxiv.org/abs/2510.21078v1
- Date: Fri, 24 Oct 2025 01:36:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 09:00:15.349186
- Title: Neural Collapse under Gradient Flow on Shallow ReLU Networks for Orthogonally Separable Data
- Title(参考訳): 直交分離データのための浅部ReLUネットワーク上の勾配流下のニューラル崩壊
- Authors: Hancheng Min, Zhihui Zhu, René Vidal,
- Abstract要約: 直交分離可能なデータを分類するための2層ReLUネットワーク上の勾配流がニューラル・コラプス(NC)を示すことを示す。
NCの出現を促進するためのトレーニング力学の暗黙バイアスの役割を明らかにする。
- 参考スコア(独自算出の注目度): 52.737775129027575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Among many mysteries behind the success of deep networks lies the exceptional discriminative power of their learned representations as manifested by the intriguing Neural Collapse (NC) phenomenon, where simple feature structures emerge at the last layer of a trained neural network. Prior works on the theoretical understandings of NC have focused on analyzing the optimization landscape of matrix-factorization-like problems by considering the last-layer features as unconstrained free optimization variables and showing that their global minima exhibit NC. In this paper, we show that gradient flow on a two-layer ReLU network for classifying orthogonally separable data provably exhibits NC, thereby advancing prior results in two ways: First, we relax the assumption of unconstrained features, showing the effect of data structure and nonlinear activations on NC characterizations. Second, we reveal the role of the implicit bias of the training dynamics in facilitating the emergence of NC.
- Abstract(参考訳): ディープ・ネットワークの成功の背後にある多くの謎の中には、興味深いニューラル・コラプス(NC)現象が示すように、学習した表現の異常な識別力があり、そこでは、訓練されたニューラルネットワークの最後の層に単純な特徴構造が現れる。
NCの理論的理解に関する先行研究は、最終層の特徴を制約のない自由最適化変数として考慮し、その大域的ミニマがNCを示すことを示すことにより、行列分解のような問題の最適化状況を分析することに重点を置いている。
本稿では,直交分離可能なデータの分類を行う2層ReLUネットワーク上の勾配流がNCを示すことを示す。
第2に、NCの出現を促進するためのトレーニングダイナミクスの暗黙バイアスの役割を明らかにする。
関連論文リスト
- Beyond Unconstrained Features: Neural Collapse for Shallow Neural Networks with General Data [0.8594140167290099]
ニューラル崩壊(Neural collapse, NC)は、ディープ・ニューラル・ネットワーク(DNN)の終末期に発生する現象である。
2層または3層ニューラルネットワークでNCが発生した場合の完全な特徴付けを提供する。
論文 参考訳(メタデータ) (2024-09-03T12:30:21Z) - Supervised Contrastive Representation Learning: Landscape Analysis with
Unconstrained Features [33.703796571991745]
最近の研究では、ゼロトレーニングを超えて訓練された過度パラメータ化されたディープニューラルネットワークが、最終層に特徴的な構造パターンを示すことが明らかになっている。
これらの結果から,これらのネットワークにおける最終層出力はクラス内変動が最小限であることがわかった。
論文 参考訳(メタデータ) (2024-02-29T06:02:45Z) - Deep Neural Collapse Is Provably Optimal for the Deep Unconstrained
Features Model [21.79259092920587]
深い制約のない特徴モデルにおいて、二分分類のための一意な大域的最適化は、ディープ・ニューラル・崩壊(DNC)に典型的なすべての特性を示すことを示す。
また, (i) 深部非拘束特徴モデルを勾配降下法により最適化することにより, 得られた解は我々の理論とよく一致し, (ii) 訓練されたネットワークはDNCに適した非拘束特徴を回復することを示した。
論文 参考訳(メタデータ) (2023-05-22T15:51:28Z) - Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced
Data [12.225207401994737]
大量のパラメータを持つ複雑な系は、収束するまでのトレーニングで同じ構造を持つことを示す。
特に、最終層の特徴がクラス平均に崩壊することが観察されている。
本結果は,最終層の特徴と分類器をベクトルからなる幾何学へ収束させることを示す。
論文 参考訳(メタデータ) (2023-01-01T16:29:56Z) - Extended Unconstrained Features Model for Exploring Deep Neural Collapse [59.59039125375527]
近年、ディープニューラルネットワークで「神経崩壊」(NC)と呼ばれる現象が経験的に観察されている。
最近の論文は、単純化された「制約なし特徴モデル」を最適化する際に、この構造を持つ最小化器が出現することを示している。
本稿では, 正規化MSE損失に対するUDFについて検討し, クロスエントロピーの場合よりも最小化器の特徴がより構造化可能であることを示す。
論文 参考訳(メタデータ) (2022-02-16T14:17:37Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
ヘッセン行列のノルムを近似し, 制御することにより, 層間における重みのグローバルな曲率を厳密に推定する。
Word2Vec と MNIST/CIFAR 画像分類タスクの実験により,Hessian ノルムの追跡が診断ツールとして有用であることが確認された。
論文 参考訳(メタデータ) (2020-04-20T18:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。