論文の概要: Uniform Convergence Beyond Glivenko-Cantelli
- arxiv url: http://arxiv.org/abs/2510.21506v1
- Date: Fri, 24 Oct 2025 14:33:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 06:57:23.431235
- Title: Uniform Convergence Beyond Glivenko-Cantelli
- Title(参考訳): Glivenko-Cantelliを超える一様収束
- Authors: Tanmay Devale, Pramith Devulapalli, Steve Hanneke,
- Abstract要約: コレクションが任意の任意の推定器による一様平均推定を許可した場合にキャプチャするUniform Mean Estimability、別名$UME-$ learnabilityを導入する。
平均ベクトルの分離性が$UME-$学習可能性に十分であることを示す。
また、$UME-$学習可能コレクションの可算和も$UME-$学習可能であることを示す。
- 参考スコア(独自算出の注目度): 28.76184007708457
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We characterize conditions under which collections of distributions on $\{0,1\}^\mathbb{N}$ admit uniform estimation of their mean. Prior work from Vapnik and Chervonenkis (1971) has focused on uniform convergence using the empirical mean estimator, leading to the principle known as $P-$ Glivenko-Cantelli. We extend this framework by moving beyond the empirical mean estimator and introducing Uniform Mean Estimability, also called $UME-$ learnability, which captures when a collection permits uniform mean estimation by any arbitrary estimator. We work on the space created by the mean vectors of the collection of distributions. For each distribution, the mean vector records the expected value in each coordinate. We show that separability of the mean vectors is a sufficient condition for $UME-$ learnability. However, we show that separability of the mean vectors is not necessary for $UME-$ learnability by constructing a collection of distributions whose mean vectors are non-separable yet $UME-$ learnable using techniques fundamentally different from those used in our separability-based analysis. Finally, we establish that countable unions of $UME-$ learnable collections are also $UME-$ learnable, solving a conjecture posed in Cohen et al. (2025).
- Abstract(参考訳): 我々は、$\{0,1\}^\mathbb{N}$ 上の分布の集合がそれらの平均を均一に推定する条件を特徴づける。
Vapnik と Chervonenkis (1971) の以前の研究は、経験的平均推定器を用いた一様収束に焦点を当てており、この原理は$P-$ Glivenko-Cantelli と呼ばれる。
我々はこのフレームワークを、経験的平均推定器を超えて拡張し、任意の任意の推定器による一様平均推定を許す場合をキャプチャするUniform Mean Estimability、別名$UME-$ learnabilityを導入することで拡張する。
分布の集合の平均ベクトルによって生成される空間について研究する。
各分布について、平均ベクトルは各座標に期待値を記録する。
平均ベクトルの分離性が$UME-$学習可能性に十分であることを示す。
しかし,平均ベクトルが非分離可能である分布の集合を構成することにより,平均ベクトルの分離性は$UME-$学習性には必要ではなく,平均ベクトルが$UME-$学習性を持つことを示す。
最後に、$UME-$学習可能コレクションの可算和も$UME-$学習可能であることを確立し、Cohen et al (2025) の予想を解く。
関連論文リスト
- Near-Optimal Clustering in Mixture of Markov Chains [74.3828414695655]
我々は、長さ$H$の軌跡を、大きさ$S$の有限状態空間上の未知のエルゴードマルコフ鎖の1つによって生成される、$T$ trajectories of length $H$の問題を研究する。
我々は、連鎖の遷移核間の重み付きKL分散によって支配されるクラスタリングエラー率に基づいて、インスタンス依存で高い確率の低い境界を導出する。
次に,新しい2段階クラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-06-02T05:10:40Z) - SoS Certifiability of Subgaussian Distributions and its Algorithmic Applications [37.208622097149714]
すべての$d inmathbb N$に対して、すべての中心部分ガウス分布 $mathcal D$ on $mathbb Rd$, and every even $p inmathbb N$, $d-optimal inmathbb N$, $d-optimal inmathbb N$ が成り立つような普遍定数 $C>0$ が存在することを証明している。
これは、すべてのサブガウス分布がemphS-certifiably subgaussianであることを示す。
論文 参考訳(メタデータ) (2024-10-28T16:36:58Z) - Distributional Reinforcement Learning with Dual Expectile-Quantile Regression [51.87411935256015]
分布RLに対する量子レグレッションアプローチは、任意の戻り分布を柔軟かつ効果的に学習する方法を提供する。
我々は,分布推定が消失することを示し,推定分布が急速に平均に崩壊することを実証的に観察した。
我々は,$L$の学習効率に感化され,効率のよい学習方法として,返却分布の期待値と量子値を共同で学習することを提案する。
論文 参考訳(メタデータ) (2023-05-26T12:30:05Z) - Replicable Clustering [57.19013971737493]
我々は,統計学的な$k$-medians,統計学的な$k$-means,統計学的な$k$-centers問題のアルゴリズムをブラックボックス方式で近似ルーチンを用いて提案する。
理論的結果を検証するブラックボックスとしてsklearnの$k$-means++実装を用いた2次元合成分布の実験も行っている。
論文 参考訳(メタデータ) (2023-02-20T23:29:43Z) - On counterfactual inference with unobserved confounding [36.18241676876348]
独立だが不均一な単位を持つ観測的研究を前提として、各単位の反実分布を学習することが目的である。
我々は、すべての$n$サンプルをプールして、すべての$n$パラメータベクトルを共同で学習する凸目的を導入する。
対数的ソボレフ不等式を満たすためにコンパクトに支持された分布に対して十分な条件を導出する。
論文 参考訳(メタデータ) (2022-11-14T04:14:37Z) - Robust Learning of Optimal Auctions [84.13356290199603]
本研究では、入札者の評価値のサンプルを逆向きに破損させたり、逆向きに歪んだ分布から引き出すことができる場合に、サンプルから収益-最適マルチバイダオークションを学習する問題について検討する。
我々は,コルモゴロフ-スミルノフ距離における元の分布に対して$alpha$-closeの「全ての真の分布」に対して,収入がほぼ同時に最適であるメカニズムを学習できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-07-13T17:37:21Z) - $(f,\Gamma)$-Divergences: Interpolating between $f$-Divergences and
Integral Probability Metrics [6.221019624345409]
我々は、$f$-divergences と積分確率メトリクス(IPMs)の両方を仮定する情報理論の分岐を構築するためのフレームワークを開発する。
2段階の質量再分配/物質輸送プロセスとして表現できることが示される。
統計的学習を例として,重み付き,絶対連続的なサンプル分布に対するGAN(generative adversarial network)の訓練において,その優位性を示す。
論文 参考訳(メタデータ) (2020-11-11T18:17:09Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
本研究では,高次元ガウス混合系の対向ロバスト条件下での効率的な学習性について検討する。
理論的に最適に近い誤り証明である$tildeO(epsilon)$の情報を、$epsilon$-corrupted $k$-mixtureで学習するアルゴリズムを提供する。
我々の主な技術的貢献は、ガウス混合系からの新しい頑健な識別可能性証明クラスターであり、これは正方形の定度証明システムによって捉えることができる。
論文 参考訳(メタデータ) (2020-05-13T16:44:12Z) - Robust $k$-means Clustering for Distributions with Two Moments [4.21934751979057]
我々は、$N$独立観測に基づいて量子化器を構成する$k$-meansクラスタリング問題に対するロバストアルゴリズムについて考察する。
我々の主な結果は、一般分離ヒルベルト空間における2つの有界モーメント仮定の下で成り立つ平均に基づく非漸近的過剰歪み境界の中央値である。
論文 参考訳(メタデータ) (2020-02-06T16:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。