論文の概要: Surface Reading LLMs: Synthetic Text and its Styles
- arxiv url: http://arxiv.org/abs/2510.22162v2
- Date: Tue, 28 Oct 2025 07:27:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 13:20:32.886895
- Title: Surface Reading LLMs: Synthetic Text and its Styles
- Title(参考訳): 表面読解LDM:合成テキストとそのスタイル
- Authors: Hannes Bajohr,
- Abstract要約: MLの進歩の潜在的な台地にもかかわらず、大きな言語モデルの社会的影響は、超知能に近づくのではなく、人間の文章と区別できないテキスト表面を生成することである。
本稿では,LLMが人間通信に登録する即時平面への参加として,「地表面の整合性」のセミオティックスを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite a potential plateau in ML advancement, the societal impact of large language models lies not in approaching superintelligence but in generating text surfaces indistinguishable from human writing. While Critical AI Studies provides essential material and socio-technical critique, it risks overlooking how LLMs phenomenologically reshape meaning-making. This paper proposes a semiotics of "surface integrity" as attending to the immediate plane where LLMs inscribe themselves into human communication. I distinguish three knowledge interests in ML research (epistemology, epist\=em\=e, and epistemics) and argue for integrating surface-level stylistic analysis alongside depth-oriented critique. Through two case studies examining stylistic markers of synthetic text, I argue how attending to style as a semiotic phenomenon reveals LLMs as cultural actors that transform the conditions of meaning emergence and circulation in contemporary discourse, independent of questions about machine consciousness.
- Abstract(参考訳): MLの進歩の潜在的な台地にもかかわらず、大きな言語モデルの社会的影響は、超知能に近づくのではなく、人間の文章と区別できないテキスト表面を生成することである。
批判的AI研究は、必須の材料と社会技術的批判を提供するが、LLMが表現学的に意味作りを形作る方法を見越すリスクがある。
本稿では,LLMが人間通信に登録する即時平面への参加として,「地表面の整合性」のセミオティックスを提案する。
ML研究における3つの知識的関心 (epistemology, epist\=em\=e, epistemics) を区別し, 深度指向的批判とともに表面レベルのスタイリスティック分析を統合することについて議論する。
合成テキストの文体的マーカーを調べる2つのケーススタディを通じて、機械意識に関する疑問とは無関係に、現代言説における意味の出現と循環の状況を変える文化的アクターとしてのLLMが、どのようにしてセミオティックな現象としてのスタイルに出席するかを論じる。
関連論文リスト
- From Perception to Cognition: A Survey of Vision-Language Interactive Reasoning in Multimodal Large Language Models [66.36007274540113]
MLLM(Multimodal Large Language Models)は、物理的世界に対する深い人間的な理解と相互作用を達成するための試みである。
情報取得(知覚)や推論(認知)を行う際、しばしば浅く不整合な統合を示す。
この調査では、新しい統合分析フレームワーク「知覚から認知へ」を紹介した。
論文 参考訳(メタデータ) (2025-09-29T18:25:40Z) - Drivel-ology: Challenging LLMs with Interpreting Nonsense with Depth [21.092167028989632]
ドライブロロジーは「深みのあるナンセンス」によって特徴づけられる言語現象である
我々は、英語、マンダリン、スペイン語、フランス語、日本語、韓国語で、1200以上の精巧にキュレートされ、多様なサンプルのベンチマークデータセットを構築した。
現在の大規模言語モデル (LLM) は,ドライブロジカルテキストの階層的意味論の理解に一貫して失敗している。
論文 参考訳(メタデータ) (2025-09-04T03:58:55Z) - Not Minds, but Signs: Reframing LLMs through Semiotics [0.0]
本稿では,Large Language Models (LLMs) に関するセミオティックな視点を論じる。
LLMが言語を理解したり、人間の思考をシミュレートしたりするのではなく、言語形式を再結合し、再テクスチャ化し、循環させることが主な機能であると提案する。
我々は文学、哲学、教育、文化生産の応用を探究する。
論文 参考訳(メタデータ) (2025-05-20T08:49:18Z) - How Deep is Love in LLMs' Hearts? Exploring Semantic Size in Human-like Cognition [75.11808682808065]
本研究では,大言語モデル (LLM) が意味的サイズを理解する上で類似した傾向を示すかどうかを検討する。
以上の結果から,マルチモーダルトレーニングはLLMにとって人間的な理解を深める上で不可欠であることが示唆された。
最後に,LLMが実世界のWebショッピングシナリオにおいて,より大きなセマンティックサイズを持つ注目の見出しに影響されているかを検討する。
論文 参考訳(メタデータ) (2025-03-01T03:35:56Z) - Beyond Profile: From Surface-Level Facts to Deep Persona Simulation in LLMs [50.0874045899661]
本稿では,文字のテキストワークに現れる言語パターンと独特の思考パターンの両方を再現するモデルである characterBot を紹介する。
著名な中国の作家ル・ジュンをケーススタディとして、17冊のエッセイ集から派生した4つの訓練課題を提案する。
これには、外部の言語構造と知識を習得することに焦点を当てた事前訓練タスクと、3つの微調整タスクが含まれる。
言語的正確性と意見理解の3つのタスクにおいて、キャラクタボットを評価し、適応されたメトリクスのベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2025-02-18T16:11:54Z) - The Stochastic Parrot on LLM's Shoulder: A Summative Assessment of Physical Concept Understanding [65.28200190598082]
本稿では、慎重に設計された物理概念理解タスクであるPhysorCoについて要約評価を行う。
我々のタスクは、物理的現象を抽象的に記述するグリッド形式入力の使用によって問題を緩和する。
1)GP-4oを含む最先端のLLM, 40%遅れの遅れ, 2) グリッドタスクで失敗するとオウム, o1 現象が LLM に存在するが, 自然言語で同じ概念を記述し, 認識することができる。
論文 参考訳(メタデータ) (2025-02-13T04:00:03Z) - Inclusivity in Large Language Models: Personality Traits and Gender Bias in Scientific Abstracts [49.97673761305336]
我々は,3つの大きな言語モデル (LLM) を,人間の物語スタイルと潜在的な性別バイアスに適合させることで評価した。
以上の結果から,これらのモデルは一般的にヒトの投稿内容によく似たテキストを生成するが,スタイル的特徴の変化は有意な性差を示すことが示唆された。
論文 参考訳(メタデータ) (2024-06-27T19:26:11Z) - A Philosophical Introduction to Language Models - Part II: The Way Forward [0.0]
大規模言語モデル(LLM)の最近の進歩によって提起された新しい哲学的問題について考察する。
我々は特に,LLMの内部表現と計算の性質に関する因果介入手法の証拠を検証し,解釈可能性に関する問題に焦点をあてる。
建築的特徴や学習シナリオが適切に制約されている場合、LLMのようなシステムが人間の認知のモデル化に関係があるかどうかを論じる。
論文 参考訳(メタデータ) (2024-05-06T07:12:45Z) - Should We Fear Large Language Models? A Structural Analysis of the Human
Reasoning System for Elucidating LLM Capabilities and Risks Through the Lens
of Heidegger's Philosophy [0.0]
本研究では,Large Language Models(LLM)の能力とリスクについて検討する。
LLM内の単語関係の統計的パターンと、Martin Heidegger氏の概念である"ready-to-hand"と"present-at-hand"の間には、革新的な並列性がある。
以上の結果から, LLMには直接的説明推論と擬似論理推論の能力があるが, 真理的推論に乏しく, 創造的推論能力がないことが明らかとなった。
論文 参考訳(メタデータ) (2024-03-05T19:40:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。