論文の概要: ATLAS: Actor-Critic Task-Completion with Look-ahead Action Simulation
- arxiv url: http://arxiv.org/abs/2510.22732v1
- Date: Sun, 26 Oct 2025 16:03:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 15:28:15.343587
- Title: ATLAS: Actor-Critic Task-Completion with Look-ahead Action Simulation
- Title(参考訳): ATLAS:ルック・アヘッド・アクション・シミュレーションによるアクタークリティカル・タスク・コンプリート
- Authors: Jiali Cheng, Anjishnu Kumar, Roshan Lal, Rishi Rajasekaran, Hani Ramezani, Omar Zia Khan, Oleg Rokhlenko, Sunny Chiu-Webster, Gang Hua, Hadi Amiri,
- Abstract要約: ATLASは、認知空間におけるこれらの行動の結果をシミュレートすることで、環境のモデルに基づく計画を作成するメモリ拡張エージェントである。
WebArena-Liteベンチマークでは、これまで公表された最先端技術の53.9%の成功率と比較して63%の成功率を達成した。
- 参考スコア(独自算出の注目度): 28.54052846801967
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We observe that current state-of-the-art web-agents are unable to effectively adapt to new environments without neural network fine-tuning, without which they produce inefficient execution plans due to a lack of awareness of the structure and dynamics of the new environment. To address this limitation, we introduce ATLAS (Actor-Critic Task-completion with Look-ahead Action Simulation), a memory-augmented agent that is able to make plans grounded in a model of the environment by simulating the consequences of those actions in cognitive space. Our agent starts by building a "cognitive map" by performing a lightweight curiosity driven exploration of the environment. The planner proposes candidate actions; the simulator predicts their consequences in cognitive space; a critic analyzes the options to select the best roll-out and update the original plan; and a browser executor performs the chosen action. On the WebArena-Lite Benchmark, we achieve a 63% success rate compared to 53.9% success rate for the previously published state-of-the-art. Unlike previous systems, our modular architecture requires no website-specific LLM fine-tuning. Ablations show sizable drops without the world-model, hierarchical planner, and look-ahead-based replanner confirming their complementary roles within the design of our system
- Abstract(参考訳): 現在最先端のWebエージェントは、ニューラルネットワークの微調整なしに新しい環境に効果的に適応することができず、新しい環境の構造やダイナミクスの認識が欠如していることから、非効率な実行計画を作成することができない。
この制限に対処するために、認知空間におけるこれらの行動の結果をシミュレートし、環境モデルに基づく計画を立てることができる記憶増強エージェントATLAS(Actor-Critic Task-Completion with Look-ahead Action Simulation)を導入する。
私たちのエージェントは、軽量な好奇心を駆使した環境探索を行うことで、"認知マップ"を構築することから始まります。
プランナーは候補アクションを提案し、シミュレータは認知空間における結果を予測する。批評家は最適なロールアウトを選択し、元のプランを更新するオプションを分析し、ブラウザエグゼクタは選択したアクションを実行する。
WebArena-Liteベンチマークでは、これまで公表された最先端技術の53.9%の成功率と比較して63%の成功率を達成した。
従来のシステムとは異なり、モジュールアーキテクチャではWebサイト固有のLCMの微調整は必要ありません。
世界モデル、階層型プランナー、ルックアヘッドベースのリプランナーを使わずに、システム設計における相補的な役割を確証するアブレーション
関連論文リスト
- EmbodiedBrain: Expanding Performance Boundaries of Task Planning for Embodied Intelligence [17.644658293987955]
身体的AIエージェントは、物理的環境における堅牢な空間認識、効果的なタスク計画、適応実行を行うことができる。
現在の大規模言語モデル (LLMs) とマルチモーダルLLM (MLLMs) の具体化タスクは、重要な制約に悩まされている。
EmbodiedBrain は 7B と 32B のパラメータサイズで利用できる新しい視覚言語基盤モデルである。
論文 参考訳(メタデータ) (2025-10-23T14:05:55Z) - Sample-Efficient Online Learning in LM Agents via Hindsight Trajectory Rewriting [92.57796055887995]
本稿では,言語モデルエージェントの強化学習から後視体験のリプレイに適応するプロンプトフレームワークECHOを紹介する。
ECHOは失敗した試みで達成できた代替目標のために最適化された軌道を生成する。
我々は、テキストベースのナビゲーションと計画ベンチマークであるXMiniGridのステートフルバージョンと、協調的な情報収集企業シミュレーションであるPeopleJoinQAについて、ECHOを評価した。
論文 参考訳(メタデータ) (2025-10-11T18:11:09Z) - ATLAS: Constraints-Aware Multi-Agent Collaboration for Real-World Travel Planning [53.065247112514534]
ATLASは、現実世界の旅行計画タスクにおける制約意識の複雑な性質を扱うために設計された汎用マルチエージェントフレームワークである。
我々はTravelPlannerベンチマークで最先端のパフォーマンスを示し、最終パスレートを23.3%から44.4%に改善した。
論文 参考訳(メタデータ) (2025-09-29T23:23:52Z) - LASER: LLM Agent with State-Space Exploration for Web Navigation [57.802977310392755]
大規模言語モデル(LLM)は、Webナビゲーションのようなインタラクティブな意思決定タスクにうまく適応している。
以前のメソッドでは、モデルに対して前方のみの実行モードを暗黙的に仮定しており、そこでは、オンコンテキストの例として、オラクルのトラジェクトリのみを提供する。
本稿では,対話型タスクを状態空間探索としてモデル化することを提案する。
論文 参考訳(メタデータ) (2023-09-15T05:44:08Z) - Active Sensing with Predictive Coding and Uncertainty Minimization [0.0]
2つの生物学的計算から着想を得たエンボディード探索のためのエンドツーエンドの手法を提案する。
まず,迷路ナビゲーションタスクによるアプローチを実演し,環境の遷移分布と空間的特徴を明らかにする。
本モデルでは,視覚シーンを効率的に分類するための探索によって,教師なし表現を構築する。
論文 参考訳(メタデータ) (2023-07-02T21:14:49Z) - Novelty Accommodating Multi-Agent Planning in High Fidelity Simulated Open World [7.821603097781892]
我々は、予期せぬ現象、すなわちテクストノベルティが環境中に現れるときに生じる課題に対処する。
環境への新規性の導入は、プランナーの内部モデルに不正確な結果をもたらす可能性がある。
本稿では,同時動作と外部スケジューリングをサポートするための汎用AIエージェントフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-22T03:44:04Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
大規模言語モデル(LLM)は、最近、シーケンシャルな意思決定タスクの自律的エージェントとして機能する可能性を実証している。
本研究では,LLMエージェントが環境フィードバックに応じて自己生成計画を適応的に改善することのできるクローズドループアプローチであるAdaPlannerを提案する。
幻覚を緩和するために,様々なタスク,環境,エージェント機能にまたがる計画生成を容易にするコードスタイルのLCMプロンプト構造を開発した。
論文 参考訳(メタデータ) (2023-05-26T05:52:27Z) - Generating Executable Action Plans with Environmentally-Aware Language
Models [4.162663632560141]
大量のテキストデータセットを使用してトレーニングされた大規模言語モデル(LLM)は、最近、ロボットエージェントのアクションプランを生成することを約束している。
本稿では,環境に配慮したアクションプラン作成手法を提案する。
論文 参考訳(メタデータ) (2022-10-10T18:56:57Z) - STRIPS Action Discovery [67.73368413278631]
近年のアプローチでは、すべての中間状態が欠如している場合でも、アクションモデルを合成する古典的な計画が成功している。
アクションシグネチャが不明な場合に,従来のプランナーを用いてSTRIPSアクションモデルを教師なしで合成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-30T17:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。