論文の概要: TALM: Dynamic Tree-Structured Multi-Agent Framework with Long-Term Memory for Scalable Code Generation
- arxiv url: http://arxiv.org/abs/2510.23010v1
- Date: Mon, 27 Oct 2025 05:07:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 15:28:15.456166
- Title: TALM: Dynamic Tree-Structured Multi-Agent Framework with Long-Term Memory for Scalable Code Generation
- Title(参考訳): TALM: スケーラブルコード生成のための長期メモリを備えた動的ツリー構造化マルチエージェントフレームワーク
- Authors: Ming-Tung Shen, Yuh-Jzer Joung,
- Abstract要約: エージェントコード生成には、複雑なコンテキスト管理と多段階推論が可能な大きな言語モデルが必要である。
本稿では,構造化タスク分解,局所化再推論,長期記憶機構を統合した動的フレームワークTALMを提案する。
HumanEval、BigCodeBench、ClassEvalベンチマークの実験結果は、TALMが一貫して強力な推論性能と高いトークン効率を提供することを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Agentic code generation requires large language models (LLMs) capable of complex context management and multi-step reasoning. Prior multi-agent frameworks attempt to address these challenges through collaboration, yet they often suffer from rigid workflows and high reasoning recovery costs. To overcome these limitations, we propose TALM (Tree-Structured Multi-Agent Framework with Long-Term Memory), a dynamic framework that integrates structured task decomposition, localized re-reasoning, and long-term memory mechanisms. TALM employs an extensible tree-based collaboration structure. The parent-child relationships, when combined with a divide-and-conquer strategy, enhance reasoning flexibility and enable efficient error correction across diverse task scopes. Furthermore, a long-term memory module enables semantic querying and integration of prior knowledge, supporting implicit self-improvement through experience reuse. Experimental results on HumanEval, BigCodeBench, and ClassEval benchmarks demonstrate that TALM consistently delivers strong reasoning performance and high token efficiency, highlighting its robustness and practical utility in complex code generation tasks.
- Abstract(参考訳): エージェントコード生成には、複雑なコンテキスト管理と多段階推論が可能な大規模言語モデル(LLM)が必要である。
以前のマルチエージェントフレームワークは、コラボレーションを通じてこれらの課題に対処しようとするが、多くの場合、厳格なワークフローと高い推論リカバリコストに悩まされる。
これらの制約を克服するために,構造化タスク分解,局所化再推論,長期記憶機構を統合した動的フレームワークであるTALM(Tree-Structured Multi-Agent Framework with Long-Term Memory)を提案する。
TALMは拡張可能なツリーベースのコラボレーション構造を採用している。
親子関係と配当戦略が組み合わさると、推論の柔軟性が向上し、多様なタスク範囲にまたがる効率的な誤り訂正が可能となる。
さらに、長期記憶モジュールは、経験再利用による暗黙的な自己改善をサポートし、セマンティッククエリと事前知識の統合を可能にする。
HumanEval、BigCodeBench、ClassEvalベンチマークの実験結果は、TALMが一貫して強力な推論性能と高いトークン効率を提供し、複雑なコード生成タスクにおける堅牢性と実用性を強調していることを示している。
関連論文リスト
- Dynamic Generation of Multi-LLM Agents Communication Topologies with Graph Diffusion Models [99.85131798240808]
我々はtextitGuided Topology Diffusion (GTD) と呼ばれる新しい生成フレームワークを導入する。
条件付き離散グラフ拡散モデルにインスパイアされたGTD式は、反復的な構成過程としてトポロジー合成を行う。
各ステップで生成は、多目的報酬を予測する軽量プロキシモデルによって制御される。
実験により、GTDは高いタスク適応性、スパース、効率的な通信トポロジを生成できることが示されている。
論文 参考訳(メタデータ) (2025-10-09T05:28:28Z) - Assemble Your Crew: Automatic Multi-agent Communication Topology Design via Autoregressive Graph Generation [72.44384066166147]
大規模言語モデル(LLM)に基づくマルチエージェントシステム(MAS)は、多様な領域にわたる複雑な問題を扱うための強力なソリューションとして登場した。
既存のアプローチは、事前に定義されたエージェントセットとハードコードされた相互作用構造を持つテンプレートグラフ修正パラダイムに依存しているため、基本的に制限されている。
協調グラフをスクラッチから構築することで、このパラダイムを運用する新しい自己回帰モデルであるARG-Designerを提案する。
論文 参考訳(メタデータ) (2025-07-24T09:17:41Z) - GoalfyMax: A Protocol-Driven Multi-Agent System for Intelligent Experience Entities [8.508965426627887]
私たちは、エンドツーエンドのマルチエージェントコラボレーションのためのプロトコル駆動フレームワークであるGoalfyMaxを紹介します。
GoalfyMax が Model Context Protocol (MCP) 上に構築された標準化された Agent-to-Agent (A2A) 通信層を導入
Experience Pack(XP)アーキテクチャは、タスクの合理性と実行トレースの両方を保存する階層型メモリシステムである。
論文 参考訳(メタデータ) (2025-07-13T05:13:52Z) - A representational framework for learning and encoding structurally enriched trajectories in complex agent environments [1.1470070927586018]
人工知能エージェントが最適な決定を行い、それらを異なるドメインやタスクに一般化する能力は、複雑なシナリオで妥協される。
この問題に対処する方法の1つは、世界の効率的な表現を学習することと、エージェントのアクションが状態-行動遷移においてそれらにどのように影響するかに焦点を当てている。
本稿では,エージェントのオントロジーを強化し,従来のトラジェクトリ概念を拡張し,タスク実行のより微妙な視点を提供することを提案する。
論文 参考訳(メタデータ) (2025-03-17T14:04:27Z) - EpiCoder: Encompassing Diversity and Complexity in Code Generation [66.43738008739555]
既存のコード生成方法はシードデータとしてコードスニペットを使用する。
階層的なコード機能を中心に展開する,新しい機能ツリーベースの合成フレームワークを提案する。
我々のフレームワークは、生成されたコードの複雑さを正確に制御し、関数レベルの操作からマルチファイルのシナリオまで幅広い機能を実現する。
論文 参考訳(メタデータ) (2025-01-08T18:58:15Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
CodePlanは、テキストコード形式の計画を生成し、追跡するフレームワークで、高いレベルの構造化された推論プロセスの概要を擬似コードで示します。
CodePlanは、洗練された推論タスク固有のリッチなセマンティクスと制御フローを効果的にキャプチャする。
反応を直接生成するのに比べて25.1%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2024-09-19T04:13:58Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - TDAG: A Multi-Agent Framework based on Dynamic Task Decomposition and Agent Generation [41.21899915378596]
動的タスク分解・エージェント生成(TDAG)に基づくマルチエージェントフレームワークを提案する。
このフレームワークは複雑なタスクを小さなサブタスクに動的に分解し、それぞれが特定の生成されたサブエージェントに割り当てる。
ItineraryBenchは、さまざまな複雑さのタスク間でのメモリ、計画、ツール使用量のエージェントの能力を評価するように設計されている。
論文 参考訳(メタデータ) (2024-02-15T18:27:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。