論文の概要: LightKGG: Simple and Efficient Knowledge Graph Generation from Textual Data
- arxiv url: http://arxiv.org/abs/2510.23341v1
- Date: Mon, 27 Oct 2025 13:55:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 15:28:15.565087
- Title: LightKGG: Simple and Efficient Knowledge Graph Generation from Textual Data
- Title(参考訳): LightKGG:テキストデータからシンプルで効率的な知識グラフ生成
- Authors: Teng Lin,
- Abstract要約: LightKGGは、小規模言語モデルを用いてテキストデータから効率的なKG抽出を可能にする新しいフレームワークである。
コンテキスト統合グラフ抽出は、コンテキスト情報をノードやエッジと統合したグラフ構造に統合する。
トポロジー強化関係推論は、抽出されたグラフの固有のトポロジーを利用して、効率的に関係を推測する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scarcity of high-quality knowledge graphs (KGs) remains a critical bottleneck for downstream AI applications, as existing extraction methods rely heavily on error-prone pattern-matching techniques or resource-intensive large language models (LLMs). While recent tools leverage LLMs to generate KGs, their computational demands limit accessibility for low-resource environments. Our paper introduces LightKGG, a novel framework that enables efficient KG extraction from textual data using small-scale language models (SLMs) through two key technical innovations: (1) Context-integrated Graph extraction integrates contextual information with nodes and edges into a unified graph structure, reducing the reliance on complex semantic processing while maintaining more key information; (2) Topology-enhanced relationship inference leverages the inherent topology of the extracted graph to efficiently infer relationships, enabling relationship discovery without relying on complex language understanding capabilities of LLMs. By enabling accurate KG construction with minimal hardware requirements, this work bridges the gap between automated knowledge extraction and practical deployment scenarios while introducing scientifically rigorous methods for optimizing SLM efficiency in structured NLP tasks.
- Abstract(参考訳): 既存の抽出手法はエラーが発生しやすいパターンマッチング技術やリソース集約型大規模言語モデル(LLM)に大きく依存しているため、高品質な知識グラフ(KG)の不足は、下流AIアプリケーションにとって重要なボトルネックとなっている。
最近のツールはLCMを利用してKGを生成するが、その計算要求は低リソース環境へのアクセシビリティを制限する。
筆者らは,1) コンテキスト統合グラフ抽出をノードやエッジと統合されたグラフ構造に統合し,より重要な情報を維持しながら複雑な意味処理への依存を低減し,(2) トポロジ強化された関係推論は,抽出したグラフ固有のトポロジを利用して関係を効率的に推論し,LLMの複雑な言語理解能力に頼ることなく関係発見を可能にする,という2つの重要な技術革新を通じて,テキストデータから効率的なKG抽出を可能にする新しいフレームワークであるLightKGGを紹介した。
最小限のハードウェア要件で正確なKG構築を可能にすることにより、構造化NLPタスクにおいてSLM効率を最適化する科学的に厳密な手法を導入しながら、自動知識抽出と実践的な展開シナリオのギャップを埋める。
関連論文リスト
- Enrich-on-Graph: Query-Graph Alignment for Complex Reasoning with LLM Enriching [61.824094419641575]
大言語モデル(LLM)は知識グラフ質問応答(KGQA)のような知識集約的なシナリオにおける幻覚と事実的誤りに苦しむ
これは、構造化知識グラフ(KG)と非構造化クエリのセマンティックギャップによるもので、その焦点や構造に固有の違いが原因である。
既存の手法は通常、バニラKGの資源集約的で非スケーリング可能な推論を用いるが、このギャップを見落としている。
我々は、LLMの事前知識を活用してKGを充実させる柔軟なフレームワークEnrich-on-Graph(EoG)を提案し、グラフとクエリ間のセマンティックギャップを埋める。
論文 参考訳(メタデータ) (2025-09-25T06:48:52Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
大規模言語モデル(LLM)は、様々な領域にわたって強い帰納的推論能力を示している。
既存のRAGパイプラインのほとんどは非構造化テキストに依存しており、解釈可能性と構造化推論を制限する。
近年,知識グラフ解答のための知識グラフとLLMの統合について検討している。
KGQAにおける効率的なグラフ検索のための新しいフレームワークであるRAPLを提案する。
論文 参考訳(メタデータ) (2025-06-11T12:03:52Z) - Injecting Knowledge Graphs into Large Language Models [0.0]
我々は,大規模言語モデル内のグラフ埋め込みをトークンとして統合するエンコーディング技術を構築した。
我々のアプローチは、モデルに依存しず、リソース効率が良く、どのLLMとも互換性がある。
論文 参考訳(メタデータ) (2025-05-12T13:31:26Z) - LightPROF: A Lightweight Reasoning Framework for Large Language Model on Knowledge Graph [57.382255728234064]
大きな言語モデル(LLM)は、テキスト理解とゼロショット推論において素晴らしい能力を持っている。
知識グラフ(KG)は、LLMの推論プロセスに対して、リッチで信頼性の高いコンテキスト情報を提供する。
我々は、KGQA(LightPROF)のための新しい軽量で効率的なPrompt Learning-ReasOning Frameworkを提案する。
論文 参考訳(メタデータ) (2025-04-04T03:03:47Z) - Comprehending Knowledge Graphs with Large Language Models for Recommender Systems [13.270018897057293]
知識グラフを改善するために,CoLaKGと呼ばれる新しい手法を提案する。
項目中心のサブグラフ抽出とプロンプトエンジニアリングを用いることで、ローカル情報を正確に理解することができる。
さらに、意味に基づく検索モジュールを通じて、各項目は知識グラフ全体の関連項目によって濃縮される。
論文 参考訳(メタデータ) (2024-10-16T04:44:34Z) - From Anchors to Answers: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [27.353083085394008]
グラフ表現のためのアンカーベース位置符号化方式を備えた新しいフレームワークNT-LLMを提案する。
提案手法では,アンカーとして参照ノードを戦略的に選択し,各ノードの位置をアンカーに対してエンコードし,既存の手法の計算負担を伴わずに重要なトポロジ情報を取得する。
NT-LLMは、位置符号化事前訓練のためのランク保存目的を実装することにより、基本構造解析から複雑な推論シナリオに至るまで、多種多様なグラフタスクにまたがる優れた性能を実現する。
論文 参考訳(メタデータ) (2024-10-14T17:21:57Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
事前訓練された知識と強力なセマンティック理解能力を持つ大規模言語モデル(LLM)は、最近、視覚とテキストデータを使用してアプリケーションに恩恵をもたらす顕著な能力を示している。
E-LLaGNNは、グラフから限られたノード数を増やして、グラフ学習のメッセージパッシング手順を強化するオンデマンドLLMサービスを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-20T22:09:42Z) - Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph [1.7418328181959968]
本研究は,革新的なセマンティッククエリ処理システムを開発することを目的としている。
オーストラリア国立大学のコンピュータサイエンス(CS)研究者による研究成果に関する総合的な情報を得ることができる。
論文 参考訳(メタデータ) (2024-05-24T09:19:45Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
本稿では,事前学習したLMから任意の関係を持つ大規模KGを抽出する手法を提案する。
関係定義の最小限の入力により、アプローチは膨大な実体対空間を効率的に探索し、多様な正確な知識を抽出する。
我々は、異なるLMから400以上の新しい関係を持つKGを収穫するためのアプローチを展開している。
論文 参考訳(メタデータ) (2022-06-28T19:46:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。