論文の概要: Tighter CMI-Based Generalization Bounds via Stochastic Projection and Quantization
- arxiv url: http://arxiv.org/abs/2510.23485v1
- Date: Mon, 27 Oct 2025 16:17:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 15:28:15.616242
- Title: Tighter CMI-Based Generalization Bounds via Stochastic Projection and Quantization
- Title(参考訳): 確率射影と量子化によるCMIに基づく高次一般化境界
- Authors: Milad Sefidgaran, Kimia Nadjahi, Abdellatif Zaidi,
- Abstract要約: 我々は,統計的学習アルゴリズムの一般化誤差に基づく新しい条件付き相互情報(CMI)境界を確立するために,予測と損失圧縮を利用する。
我々の境界は$mathcalO (1/sqrtn)$の順序で適切な一般化を保証する。
各学習アルゴリズムには、記憶しない補助的アルゴリズムが存在し、任意のデータ分布に対して同等の一般化誤差が得られることを示す。
- 参考スコア(独自算出の注目度): 23.435054174825282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we leverage stochastic projection and lossy compression to establish new conditional mutual information (CMI) bounds on the generalization error of statistical learning algorithms. It is shown that these bounds are generally tighter than the existing ones. In particular, we prove that for certain problem instances for which existing MI and CMI bounds were recently shown in Attias et al. [2024] and Livni [2023] to become vacuous or fail to describe the right generalization behavior, our bounds yield suitable generalization guarantees of the order of $\mathcal{O}(1/\sqrt{n})$, where $n$ is the size of the training dataset. Furthermore, we use our bounds to investigate the problem of data "memorization" raised in those works, and which asserts that there are learning problem instances for which any learning algorithm that has good prediction there exist distributions under which the algorithm must "memorize" a big fraction of the training dataset. We show that for every learning algorithm, there exists an auxiliary algorithm that does not memorize and which yields comparable generalization error for any data distribution. In part, this shows that memorization is not necessary for good generalization.
- Abstract(参考訳): 本稿では,統計的学習アルゴリズムの一般化誤差に基づく条件付き相互情報(CMI)境界を確立するために,確率予測と損失圧縮を利用する。
これらの境界は、一般に既存の境界よりも厳密であることが示されている。
特に、Attias et al [2024] と Livni [2023] で最近既存の MI および CMI 境界が空で、あるいは正しい一般化の振る舞いを記述できないような問題の場合、我々の境界は $\mathcal{O}(1/\sqrt{n})$ の順序で適切な一般化を保証する。
さらに、これらの研究で提起されたデータ「記憶」の問題を調査するために境界を用いており、優れた予測を持つ学習アルゴリズムが存在する場合、アルゴリズムがトレーニングデータセットの大きな部分を「記憶」しなければならない分布が存在することを主張する学習問題事例が存在する。
各学習アルゴリズムには、記憶しない補助的アルゴリズムが存在し、任意のデータ分布に対して同等の一般化誤差が得られることを示す。
このことは、良い一般化のために暗記は必要ないことを部分的に示している。
関連論文リスト
- An Information-Theoretic Approach to Generalization Theory [27.87324770020133]
学習アルゴリズムと学習データ間の依存度を定量化する情報理論境界を解析する。
一定のプライバシーパラメータを持つ場合であっても,最大リークが制限されたアルゴリズムにより一般化が保証されることを示す。
論文 参考訳(メタデータ) (2024-08-20T10:08:21Z) - Slicing Mutual Information Generalization Bounds for Neural Networks [14.48773730230054]
我々は、ディープラーニングアルゴリズムに適した、より厳密な情報理論の一般化バウンダリを導入する。
我々の境界は、標準MI境界よりも有意な計算的および統計的優位性を提供する。
パラメータがランダムな部分空間に正確に横たわる必要がないアルゴリズムに解析を拡張します。
論文 参考訳(メタデータ) (2024-06-06T13:15:37Z) - Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
低ランク構造を持つ強化学習(RL)における行列推定問題について検討した。
低ランク帯では、回収される行列は期待される腕の報酬を指定し、低ランクマルコフ決定プロセス(MDP)では、例えばMDPの遷移カーネルを特徴付ける。
簡単なスペクトルベースの行列推定手法は,行列の特異部分空間を効率よく復元し,ほぼ最小の入力誤差を示すことを示す。
論文 参考訳(メタデータ) (2023-10-10T17:06:41Z) - Information Theoretic Lower Bounds for Information Theoretic Upper
Bounds [14.268363583731848]
コンベックス最適化の文脈における出力モデルと経験的一般化の関係について検討する。
本研究は,真のリスク最小化には相互情報が必要であることを明らかにする。
既存の情報理論の一般化境界は、SGDや正規化などのアルゴリズムの能力を捉えるのに不足している。
論文 参考訳(メタデータ) (2023-02-09T20:42:36Z) - On the Generalization for Transfer Learning: An Information-Theoretic Analysis [8.102199960821165]
一般化誤差と転帰学習アルゴリズムの過大なリスクを情報理論で解析する。
我々の結果は、おそらく予想通り、Kulback-Leibler divergenceD(mu|mu')$がキャラクタリゼーションにおいて重要な役割を果たすことを示唆している。
次に、$phi$-divergence や Wasserstein 距離といった他の発散点と結びついた相互情報を一般化する。
論文 参考訳(メタデータ) (2022-07-12T08:20:41Z) - On Leave-One-Out Conditional Mutual Information For Generalization [122.2734338600665]
残余条件付き相互情報(loo-CMI)の新しい尺度に基づく教師付き学習アルゴリズムのための情報理論の一般化境界を導出する。
他のCMI境界とは対照的に、我々のloo-CMI境界は容易に計算でき、古典的なout-out-out-cross-validationのような他の概念と関連して解釈できる。
ディープラーニングのシナリオにおいて予測された一般化ギャップを評価することにより,境界の質を実証的に検証する。
論文 参考訳(メタデータ) (2022-07-01T17:58:29Z) - Dimension Free Generalization Bounds for Non Linear Metric Learning [61.193693608166114]
我々はスパース体制と非スパース体制という2つの体制に対して一様一般化境界を提供する。
解の異なる新しい性質を頼りにすることで、次元自由一般化保証を提供することができることを示す。
論文 参考訳(メタデータ) (2021-02-07T14:47:00Z) - Tighter Generalization Bounds for Iterative Differentially Private
Learning Algorithms [95.73230376153872]
本稿では,反復学習アルゴリズムにおける一般化とプライバシ保護の関係を2つのステップで検討する。
我々は、$(varepsilon, delta)$-differential privacyは、マルチデータベース学習アルゴリズムに縛られる平均的な一般化を意味することを証明している。
次に,ほとんどの学習アルゴリズムが共有する反復的な性質が,プライバシーの保護とさらなる一般化にどのように影響するかを検討する。
論文 参考訳(メタデータ) (2020-07-18T09:12:03Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
半教師付き学習における簡単なメタ学習アルゴリズムを提案する。
その結果,提案アルゴリズムは最先端の手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-07-08T08:48:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。