論文の概要: NeuroPathNet: Dynamic Path Trajectory Learning for Brain Functional Connectivity Analysis
- arxiv url: http://arxiv.org/abs/2510.24025v2
- Date: Wed, 29 Oct 2025 06:20:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-30 13:34:45.461353
- Title: NeuroPathNet: Dynamic Path Trajectory Learning for Brain Functional Connectivity Analysis
- Title(参考訳): NeuroPathNet:脳機能結合解析のための動的経路軌道学習
- Authors: Tianqi Guo, Liping Chen, Ciyuan Peng, Jingjing Zhou, Jing Ren,
- Abstract要約: 本稿では,脳機能分割間の接続経路の動的挙動を特徴付ける新しい経路レベル軌道モデリングフレームワーク(NeuroPathNet)を提案する。
本研究では,3つの公共機能型磁気共鳴イメージング(fMRI)データセット上でのモデル性能を検証し,複数の指標において既存の主流手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 11.775153052849708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the evolution of brain functional networks over time is of great significance for the analysis of cognitive mechanisms and the diagnosis of neurological diseases. Existing methods often have difficulty in capturing the temporal evolution characteristics of connections between specific functional communities. To this end, this paper proposes a new path-level trajectory modeling framework (NeuroPathNet) to characterize the dynamic behavior of connection pathways between brain functional partitions. Based on medically supported static partitioning schemes (such as Yeo and Smith ICA), we extract the time series of connection strengths between each pair of functional partitions and model them using a temporal neural network. We validate the model performance on three public functional Magnetic Resonance Imaging (fMRI) datasets, and the results show that it outperforms existing mainstream methods in multiple indicators. This study can promote the development of dynamic graph learning methods for brain network analysis, and provide possible clinical applications for the diagnosis of neurological diseases.
- Abstract(参考訳): 脳機能ネットワークの時間的進化を理解することは、認知機構の解析と神経疾患の診断において非常に重要である。
既存の手法は、特定の機能的コミュニティ間の接続の時間的進化特性を捉えるのにしばしば困難である。
そこで本研究では,脳機能分割間の接続経路の動的挙動を特徴付ける新しい経路レベル軌道モデリングフレームワークNeuroPathNetを提案する。
医学的にサポートされた静的パーティショニングスキーム(YeoやSmith ICAなど)に基づいて,各機能パーティショニング間の接続強度の時系列を抽出し,時間的ニューラルネットワークを用いてモデル化する。
本研究では,3つの公共機能型磁気共鳴イメージング(fMRI)データセット上でのモデル性能を検証し,複数の指標において既存の主流手法よりも優れていることを示す。
本研究は,脳ネットワーク解析のための動的グラフ学習法の開発を促進するとともに,神経疾患の診断における臨床応用の可能性を示した。
関連論文リスト
- BrainATCL: Adaptive Temporal Brain Connectivity Learning for Functional Link Prediction and Age Estimation [0.33748750222488655]
本稿では、適応的時間的脳接続学習のための非教師なしノンパラメトリックフレームワークBrainATCLを提案する。
提案手法は,新たに追加されたエッジのレートに基づいて,スナップショット毎のルックバックウィンドウを動的に調整する。
グラフシーケンスはGINE-Mamba2バックボーンを用いて符号化され、静止状態fMRIデータにおける動的機能接続の時空間表現を学習する。
論文 参考訳(メタデータ) (2025-08-09T21:18:25Z) - BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
本稿では,脳ネットワークにおける複数の活性化経路を学習するための新しいフレームワークであるBrainMAPを紹介する。
本フレームワークは,タスクに関わる重要な脳領域の説明的分析を可能にする。
論文 参考訳(メタデータ) (2024-12-23T09:13:35Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
ほとんどのrs-fMRI研究は、関心のある脳領域にまたがる単一の静的機能接続行列を計算している。
これらのアプローチは、脳のダイナミクスを単純化し、目の前のゴールを適切に考慮していないリスクがある。
本稿では,時系列から直接ゴール固有の機能的接続行列を学習する,解釈可能な新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-19T23:35:06Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of
Graph Neural Network Architectures [0.5033155053523041]
グラフニューラルネットワーク(GNN)は、新しい構造化グラフ信号の解釈を可能にする。
基板上の局所的な機能的相互作用を学習することにより、GNNベースのアプローチが大規模ネットワーク研究に堅牢に拡張可能であることを示す。
論文 参考訳(メタデータ) (2021-12-08T12:57:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。