論文の概要: Epileptic Seizure Detection and Prediction from EEG Data: A Machine Learning Approach with Clinical Validation
- arxiv url: http://arxiv.org/abs/2510.24986v1
- Date: Tue, 28 Oct 2025 21:28:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-30 15:50:44.797149
- Title: Epileptic Seizure Detection and Prediction from EEG Data: A Machine Learning Approach with Clinical Validation
- Title(参考訳): 脳波データによるてんかん発作の検出と予測:臨床検査による機械学習アプローチ
- Authors: Ria Jayanti, Tanish Jain,
- Abstract要約: 本稿では,リアルタイムの発作検出と予測を統合した新しい手法を提案する。
提案手法はCHB-MIT Scalp EEG Databaseを用いて評価した。
この発作を予測できる能力は、反応性の発作管理からより積極的なアプローチへと大きく変化している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, machine learning has become an increasingly powerful tool for supporting seizure detection and monitoring in epilepsy care. Traditional approaches focus on identifying seizures only after they begin, which limits the opportunity for early intervention and proactive treatment. In this study, we propose a novel approach that integrates both real-time seizure detection and prediction, aiming to capture subtle temporal patterns in EEG data that may indicate an upcoming seizure. Our approach was evaluated using the CHB-MIT Scalp EEG Database, which includes 969 hours of recordings and 173 seizures collected from 23 pediatric and young adult patients with drug-resistant epilepsy. To support seizure detection, we implemented a range of supervised machine learning algorithms, including K-Nearest Neighbors, Logistic Regression, Random Forest, and Support Vector Machine. The Logistic Regression achieved 90.9% detection accuracy with 89.6% recall, demonstrating balanced performance suitable for clinical screening. Random Forest and Support Vector Machine models achieved higher accuracy (94.0%) but with 0% recall, failing to detect any seizures, illustrating that accuracy alone is insufficient for evaluating medical ML models with class imbalance. For seizure prediction, we employed Long Short-Term Memory (LSTM) networks, which use deep learning to model temporal dependencies in EEG data. The LSTM model achieved 89.26% prediction accuracy. These results highlight the potential of developing accessible, real-time monitoring tools that not only detect seizures as traditionally done, but also predict them before they occur. This ability to predict seizures marks a significant shift from reactive seizure management to a more proactive approach, allowing patients to anticipate seizures and take precautionary measures to reduce the risk of injury or other complications.
- Abstract(参考訳): 近年、機械学習はてんかん治療における発作検出とモニタリングをサポートするための強力なツールになりつつある。
従来のアプローチでは、発作の発症後のみの特定に重点を置いており、早期介入や予防的治療の機会を制限している。
本研究では,脳波データ中の微妙な時間的パターンを捉えることを目的として,リアルタイムの発作検出と予測の両方を統合した新しいアプローチを提案する。
薬剤耐性てんかん患者23名および若年者173名を対象に,CHB-MIT Scalp EEG Databaseを用いて検討を行った。
発作検出を支援するため,我々はK-Nearest Neighbors,Logistic Regression,Random Forest,Support Vector Machineなどの教師付き機械学習アルゴリズムを実装した。
ロジスティック回帰は89.6%のリコールで90.9%の精度を達成し、臨床検査に適したバランスの取れた性能を示した。
ランダムフォレストとサポートベクターマシンモデルは高い精度(94.0%)を達成したが、0%のリコールで発作を検知できず、クラス不均衡の医療MLモデルを評価するには精度だけでは不十分であることを示した。
発作予測には,脳波データの時間依存性をディープラーニングを用いてモデル化するLong Short-Term Memory(LSTM)ネットワークを用いた。
LSTMモデルは89.26%の予測精度を達成した。
これらの結果は、従来通り発作を検知するだけでなく、発生前にそれらを予測する、アクセス可能なリアルタイム監視ツールの開発の可能性を強調している。
この発作を予測できる能力は、反応性の発作管理からより積極的なアプローチへと大きく変化し、患者は発作を予知し、怪我やその他の合併症のリスクを軽減する予防措置を取ることができる。
関連論文リスト
- Overlap-weighted orthogonal meta-learner for treatment effect estimation over time [90.46786193198744]
ヘテロジニアス治療効果(HTE)を推定するための新しい重み付きメタラーナーを提案する。
我々のWO-Larnerは、ノイマン直交性(Neyman-orthogonality)の好ましい性質を持ち、ニュアンス関数の誤特定に対して堅牢である。
我々のWO-learnerは完全にモデルに依存しず、あらゆる機械学習モデルに適用可能であることを示す。
論文 参考訳(メタデータ) (2025-10-22T14:47:57Z) - An Empirical Investigation of Reconstruction-Based Models for Seizure Prediction from ECG Signals [0.0]
てんかん発作(Epileptic seizures)は、脳の異常で過剰な神経活動が特徴の神経疾患である。
伝統的に、脳波信号は発作予知の主要な標準となっている。
本研究は発作予測の代替手段として心電図信号を活用することに焦点を当てる。
論文 参考訳(メタデータ) (2025-04-11T09:33:11Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Preictal Period Optimization for Deep Learning-Based Epileptic Seizure Prediction [0.0]
我々は頭皮脳波(EEG)信号を用いた発作予測のための競合的深層学習モデルを開発した。
オープンアクセス型CHB-MITデータセットを対象とした19名の小児患者を対象に,本モデルを訓練・評価した。
各患者のOPPを用いて、平均感度は99.31%、特異性は95.34%、AUCは99.35%、F1-スコアは97.46%と正しく同定された。
論文 参考訳(メタデータ) (2024-07-20T13:49:14Z) - Epilepsy Seizure Detection and Prediction using an Approximate Spiking
Convolutional Transformer [12.151626573534001]
本稿では, てんかん発作セグメントを検出し, 予測するために, ニューロモルフィック・スパイキング・コンボリューション・トランス (Spking Convolutional Transformer) を提案する。
ボストン小児病院-MIT(CHB-MIT)脳波データセットを用いたスパイキング・コンフォーマーモデルによる評価結果について報告する。
生の脳波データを入力として使用することにより、提案されたスパイキングコンフォーマーの平均感度は94.9%、特異度は99.3%に達した。
論文 参考訳(メタデータ) (2024-01-21T19:23:56Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
本稿では,パーキンソン病患者のmPowerデータセットを用いて薬剤状態を予測する方法を提案する。
提案手法は,3つの薬物状態を客観的に予測する上で有望な結果を示す。
論文 参考訳(メタデータ) (2022-07-26T02:08:08Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - An End-to-End Deep Learning Approach for Epileptic Seizure Prediction [4.094649684498489]
畳み込みニューラルネットワーク(CNN)を用いたエンドツーエンドディープラーニングソリューションを提案する。
総合感度、誤予測率、受信機動作特性曲線下の面積は、それぞれ2つのデータセットで93.5%、0.063/h、0.981、98.8%、0.074/h、0.988に達する。
論文 参考訳(メタデータ) (2021-08-17T05:49:43Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z) - Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A
Review [1.7959899851975951]
脳波信号を用いた発作の早期予測における最先端ML手法のレビューを行う。
前もって予測できた場合、てんかん発作の悪影響から患者を救える。
MLベースのアルゴリズムには、てんかん発作の早期かつ正確な予測においてパラダイムシフトをもたらす可能性がある、エキサイティングな新しい展開がある。
論文 参考訳(メタデータ) (2020-02-04T06:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。