論文の概要: Learning Geometry: A Framework for Building Adaptive Manifold Models through Metric Optimization
- arxiv url: http://arxiv.org/abs/2510.26068v1
- Date: Thu, 30 Oct 2025 01:53:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-31 16:05:09.627005
- Title: Learning Geometry: A Framework for Building Adaptive Manifold Models through Metric Optimization
- Title(参考訳): 学習幾何学:メトリック最適化による適応的マニフォールドモデル構築のためのフレームワーク
- Authors: Di Zhang,
- Abstract要約: 本稿では,従来のパラメータ最適化を超越した機械学習のパラダイムを提案する。
既定位相を持つ多様体上の計量テンソル場を最適化することにより、モデル空間の幾何学的構造を動的に形成する。
この研究は、その幾何学とトポロジーを自律的に進化させることができる完全にダイナミックな「メタ・ラーナー」を構築するための確固たる基礎を築いた。
- 参考スコア(独自算出の注目度): 8.201374511929538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a novel paradigm for machine learning that moves beyond traditional parameter optimization. Unlike conventional approaches that search for optimal parameters within a fixed geometric space, our core idea is to treat the model itself as a malleable geometric entity. Specifically, we optimize the metric tensor field on a manifold with a predefined topology, thereby dynamically shaping the geometric structure of the model space. To achieve this, we construct a variational framework whose loss function carefully balances data fidelity against the intrinsic geometric complexity of the manifold. The former ensures the model effectively explains observed data, while the latter acts as a regularizer, penalizing overly curved or irregular geometries to encourage simpler models and prevent overfitting. To address the computational challenges of this infinite-dimensional optimization problem, we introduce a practical method based on discrete differential geometry: the continuous manifold is discretized into a triangular mesh, and the metric tensor is parameterized by edge lengths, enabling efficient optimization using automatic differentiation tools. Theoretical analysis reveals a profound analogy between our framework and the Einstein-Hilbert action in general relativity, providing an elegant physical interpretation for the concept of "data-driven geometry". We further argue that even with fixed topology, metric optimization offers significantly greater expressive power than models with fixed geometry. This work lays a solid foundation for constructing fully dynamic "meta-learners" capable of autonomously evolving their geometry and topology, and it points to broad application prospects in areas such as scientific model discovery and robust representation learning.
- Abstract(参考訳): 本稿では,従来のパラメータ最適化を超越した機械学習のパラダイムを提案する。
固定幾何空間内で最適なパラメータを探索する従来の手法とは異なり、我々の中心となる考え方はモデル自体を可換な幾何学的実体として扱うことである。
具体的には、予め定義された位相を持つ多様体上の計量テンソル場を最適化し、モデル空間の幾何学的構造を動的に形成する。
これを実現するために、損失関数がデータ忠実度と多様体の内在的な幾何学的複雑さとを慎重にバランスさせる変分フレームワークを構築した。
前者は観測されたデータを効果的に説明し、後者は正規化器として機能し、過度に湾曲したまたは不規則な地形をペナルティ化し、より単純なモデルを促進し、過度に適合しないようにする。
連続多様体は三角形メッシュに離散化され、計量テンソルはエッジ長でパラメータ化され、自動微分ツールによる効率的な最適化が可能となる。
理論解析により、我々のフレームワークと一般相対性理論におけるアインシュタイン・ヒルベルト作用の深い類似が明らかとなり、「データ駆動幾何」の概念に対するエレガントな物理的解釈を提供する。
さらに、固定位相であっても、計量最適化は固定幾何を持つモデルよりもはるかに大きな表現力を与えると主張する。
この研究は、その幾何学とトポロジーを自律的に進化させることができる完全にダイナミックな「メタ・ラーナー」を構築するための確固たる基盤を築き、科学モデル発見や堅牢な表現学習のような分野における幅広い応用可能性を示している。
関連論文リスト
- The Neural Differential Manifold: An Architecture with Explicit Geometric Structure [8.201374511929538]
本稿では,その基本設計に幾何学的構造を明示的に組み込んだニューラルネットワークアーキテクチャであるニューラル微分マニフォールド(NDM)を紹介する。
我々は、より効率的な最適化の可能性、継続学習の強化、科学的発見と制御可能な生成モデルへの応用など、このアプローチの理論的利点を分析する。
論文 参考訳(メタデータ) (2025-10-29T02:24:27Z) - Preconditioned Norms: A Unified Framework for Steepest Descent, Quasi-Newton and Adaptive Methods [50.070182958880146]
本稿では,事前条件付き行列ノルムの新たな概念を通じて,降下法,準ニュートン法,適応法を一般化する統一的枠組みを提案する。
この枠組みでは、行列パラメータ化設定におけるアフィンとスケール不変性の最初の体系的処理を提供する。
我々は、Muonのスペクトル幾何学とAdamスタイルのプレコンディショニングを組み合わせた、$ttMuAdam$と$texttMuAdam-SANIA$という2つの新しい方法を紹介した。
論文 参考訳(メタデータ) (2025-10-12T19:39:41Z) - Geometric Operator Learning with Optimal Transport [77.16909146519227]
複素測地上での偏微分方程式(PDE)に対する演算子学習に最適輸送(OT)を統合することを提案する。
表面に焦点を当てた3次元シミュレーションでは、OTベースのニューラルオペレーターが表面形状を2次元パラメータ化潜在空間に埋め込む。
ShapeNet-Car と DrivAerNet-Car を用いたレイノルズ平均化 Navier-Stokes 方程式 (RANS) を用いた実験により,提案手法は精度の向上と計算コストの削減を図った。
論文 参考訳(メタデータ) (2025-07-26T21:28:25Z) - Manifold Learning with Normalizing Flows: Towards Regularity, Expressivity and Iso-Riemannian Geometry [8.020732438595905]
この研究は、マルチモーダル設定で発生する歪みやモデリングエラーに対処することに焦点を当てている。
本稿では,合成データと実データの両方を用いた数値実験において,提案手法の相乗効果を示す。
論文 参考訳(メタデータ) (2025-05-12T21:44:42Z) - Neural Latent Geometry Search: Product Manifold Inference via
Gromov-Hausdorff-Informed Bayesian Optimization [21.97865037637575]
我々は、この新しい定式化を数学的に定義し、ニューラル潜在幾何探索(NLGS)として作成する。
計量幾何学からのグロモフ・ハウスドルフ距離に基づいて、候補潜在測地間の距離の新たな概念を提案する。
次に、潜在測地間の滑らかさの概念に基づいてグラフ探索空間を設計し、その計算を帰納バイアスとして利用する。
論文 参考訳(メタデータ) (2023-09-09T14:29:22Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
本稿では、最適化問題を解くための一般的な枠組みとして、ディラックの制約付きハミルトン系理論の散逸拡張を提案する。
我々の(加速された)アルゴリズムのクラスは単純で効率的なだけでなく、幅広い文脈にも適用できる。
論文 参考訳(メタデータ) (2021-07-23T13:43:34Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - Self-supervised Geometric Perception [96.89966337518854]
自己教師付き幾何知覚(self-supervised geometric perception)は、基底幾何モデルラベルなしで対応マッチングのための特徴記述子を学ぶためのフレームワークである。
また,SGPは,地上トラスラベルを用いて訓練した教師付きオークルよりも同等か優れる最先端性能を達成できることを示す。
論文 参考訳(メタデータ) (2021-03-04T15:34:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。