論文の概要: The Neural Differential Manifold: An Architecture with Explicit Geometric Structure
- arxiv url: http://arxiv.org/abs/2510.25113v1
- Date: Wed, 29 Oct 2025 02:24:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-30 15:50:44.985312
- Title: The Neural Differential Manifold: An Architecture with Explicit Geometric Structure
- Title(参考訳): ニューラル微分多様体 : 特異な幾何学構造をもつアーキテクチャ
- Authors: Di Zhang,
- Abstract要約: 本稿では,その基本設計に幾何学的構造を明示的に組み込んだニューラルネットワークアーキテクチャであるニューラル微分マニフォールド(NDM)を紹介する。
我々は、より効率的な最適化の可能性、継続学習の強化、科学的発見と制御可能な生成モデルへの応用など、このアプローチの理論的利点を分析する。
- 参考スコア(独自算出の注目度): 8.201374511929538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the Neural Differential Manifold (NDM), a novel neural network architecture that explicitly incorporates geometric structure into its fundamental design. Departing from conventional Euclidean parameter spaces, the NDM re-conceptualizes a neural network as a differentiable manifold where each layer functions as a local coordinate chart, and the network parameters directly parameterize a Riemannian metric tensor at every point. The architecture is organized into three synergistic layers: a Coordinate Layer implementing smooth chart transitions via invertible transformations inspired by normalizing flows, a Geometric Layer that dynamically generates the manifold's metric through auxiliary sub-networks, and an Evolution Layer that optimizes both task performance and geometric simplicity through a dual-objective loss function. This geometric regularization penalizes excessive curvature and volume distortion, providing intrinsic regularization that enhances generalization and robustness. The framework enables natural gradient descent optimization aligned with the learned manifold geometry and offers unprecedented interpretability by endowing internal representations with clear geometric meaning. We analyze the theoretical advantages of this approach, including its potential for more efficient optimization, enhanced continual learning, and applications in scientific discovery and controllable generative modeling. While significant computational challenges remain, the Neural Differential Manifold represents a fundamental shift towards geometrically structured, interpretable, and efficient deep learning systems.
- Abstract(参考訳): 本稿では,その基本設計に幾何学的構造を明示的に組み込んだニューラルネットワークアーキテクチャであるニューラル微分マニフォールド(NDM)を紹介する。
従来のユークリッドパラメータ空間とは別に、NDMはニューラルネットワークを、各層が局所座標チャートとして機能する微分可能多様体として再概念化し、ネットワークパラメータは各点でリーマン計量テンソルを直接パラメータ化する。
アーキテクチャは3つの相乗的レイヤで構成されている: コーディネート層は、フローの正規化にインスパイアされた非可逆変換によるスムーズなチャート遷移を実装し、幾何学層は補助的なサブネットワークを通して多様体の計量を動的に生成し、進化層はタスク性能と幾何学的単純性を両目的の損失関数によって最適化する。
この幾何正則化は過剰な曲率と体積歪みをペナリゼーションし、一般化とロバスト性を高める固有の正則化を提供する。
このフレームワークは、学習された多様体幾何と整合した自然な勾配降下最適化を可能にし、明確な幾何学的意味を持つ内部表現を与えることにより、前例のない解釈性を提供する。
我々は、より効率的な最適化の可能性、継続学習の強化、科学的発見と制御可能な生成モデルへの応用など、このアプローチの理論的利点を分析する。
重要な計算課題は残るが、ニューラル微分多様体は幾何学的に構造化され、解釈可能で、効率的なディープラーニングシステムへの根本的なシフトを表している。
関連論文リスト
- Geometry-Aware Spiking Graph Neural Network [24.920334588995072]
本稿では,スパイクに基づくニューラルダイナミクスを適応表現学習と統合するGeometry-Aware Spiking Graph Neural Networkを提案する。
複数のベンチマーク実験により、GSGはユークリッドSNNと多様体ベースGNNと比較して精度、堅牢性、エネルギー効率が優れていることが示された。
論文 参考訳(メタデータ) (2025-08-09T02:52:38Z) - Adaptive Riemannian Graph Neural Networks [29.859977834688625]
グラフ上の連続および異方性計量テンソル場を学習する新しいフレームワークを導入する。
これにより各ノードがその最適な局所幾何学を決定でき、モデルがグラフの構造的景観に流動的に適応できる。
本手法は, ヘテロ親和性ベンチマークとホモ親和性ベンチマークの双方において, 優れた性能を示す。
論文 参考訳(メタデータ) (2025-08-04T16:55:02Z) - Generalized Linear Mode Connectivity for Transformers [87.32299363530996]
驚くべき現象はリニアモード接続(LMC)であり、独立に訓練されたモデルを低損失またはゼロ損失の経路で接続することができる。
以前の研究は主に置換によるニューロンの並べ替えに焦点を合わせてきたが、そのようなアプローチは範囲に限られている。
我々は、4つの対称性クラス(置換、半置換、変換、一般可逆写像)をキャプチャする統一的なフレームワークを導入する。
この一般化により、独立に訓練された視覚変換器とGPT-2モデルの間の低障壁とゼロバリア線形経路の発見が可能となった。
論文 参考訳(メタデータ) (2025-06-28T01:46:36Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Physics-informed neural networks for transformed geometries and
manifolds [0.0]
本稿では,幾何学的変分を頑健に適合させるために,PINN内に幾何変換を統合する新しい手法を提案する。
従来のPINNに対して,特に幾何学的変動下での柔軟性の向上を実証する。
提案したフレームワークは、パラメータ化されたジオメトリ上でのディープ・ニューラル演算子のトレーニングの展望を示す。
論文 参考訳(メタデータ) (2023-11-27T15:47:33Z) - Revisiting Transformation Invariant Geometric Deep Learning: Are Initial
Representations All You Need? [80.86819657126041]
変換不変および距離保存初期表現は変換不変性を達成するのに十分であることを示す。
具体的には、多次元スケーリングを変更することで、変換不変かつ距離保存された初期点表現を実現する。
我々は、TinvNNが変換不変性を厳密に保証し、既存のニューラルネットワークと組み合わせられるほど汎用的で柔軟なことを証明した。
論文 参考訳(メタデータ) (2021-12-23T03:52:33Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
散乱変換は、畳み込みニューラルネットワークのモデルとして機能する多層ウェーブレットベースのディープラーニングアーキテクチャである。
非対称ウェーブレットの非常に一般的なクラスに基づくグラフに対して、窓付きおよび非窓付き幾何散乱変換を導入する。
これらの非対称グラフ散乱変換は、対称グラフ散乱変換と多くの理論的保証を持つことを示す。
論文 参考訳(メタデータ) (2019-11-14T17:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。