論文の概要: Comparative Analysis of Deep Learning Models for Olive Tree Crown and Shadow Segmentation Towards Biovolume Estimation
- arxiv url: http://arxiv.org/abs/2510.26573v1
- Date: Thu, 30 Oct 2025 15:00:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-31 16:05:09.870436
- Title: Comparative Analysis of Deep Learning Models for Olive Tree Crown and Shadow Segmentation Towards Biovolume Estimation
- Title(参考訳): バイオボリューム推定に向けたオリーブ樹冠とシャドーセグメンテーションの深層学習モデルの比較分析
- Authors: Wondimagegn Abebe Demissie, Stefano Roccella, Rudy Rossetto, Antonio Minnocci, Andrea Vannini, Luca Sebastiani,
- Abstract要約: オリーブ樹のバイオボリューム推定は精密農業において重要な課題であり、収量予測と資源管理を支援している。
本研究では,オリーブ樹冠とその影を超高解像度UAV画像に分割するための3種類のディープラーニングモデルU-Net,YOLOv11m-seg,Mask RCNNの比較分析を行った。
- 参考スコア(独自算出の注目度): 0.11545092788508222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Olive tree biovolume estimation is a key task in precision agriculture, supporting yield prediction and resource management, especially in Mediterranean regions severely impacted by climate-induced stress. This study presents a comparative analysis of three deep learning models U-Net, YOLOv11m-seg, and Mask RCNN for segmenting olive tree crowns and their shadows in ultra-high resolution UAV imagery. The UAV dataset, acquired over Vicopisano, Italy, includes manually annotated crown and shadow masks. Building on these annotations, the methodology emphasizes spatial feature extraction and robust segmentation; per-tree biovolume is then estimated by combining crown projected area with shadow-derived height using solar geometry. In testing, Mask R-CNN achieved the best overall accuracy (F1 = 0.86; mIoU = 0.72), while YOLOv11m-seg provided the fastest throughput (0.12 second per image). The estimated biovolumes spanned from approximately 4 to 24 cubic meters, reflecting clear structural differences among trees. These results indicate Mask R-CNN is preferable when biovolume accuracy is paramount, whereas YOLOv11m-seg suits large-area deployments where speed is critical; U-Net remains a lightweight, high-sensitivity option. The framework enables accurate, scalable orchard monitoring and can be further strengthened with DEM or DSM integration and field calibration for operational decision support.
- Abstract(参考訳): オリーブ樹のバイオボリューム推定は,特に気候ストレスの影響を受けやすい地中海地域での収量予測と資源管理を支援する,精密農業における重要な課題である。
本研究では,オリーブ樹冠とその影を超高解像度UAV画像に分割するための3種類のディープラーニングモデルU-Net,YOLOv11m-seg,Mask RCNNの比較分析を行った。
イタリアのヴィコピサノ上空で取得されたUAVデータセットには、手動でアノテートされたクラウンマスクとシャドーマスクが含まれている。
これらのアノテーションに基づいて、この手法は空間的特徴抽出とロバストなセグメンテーションを重要視する。
テストでは、Mask R-CNNが最高精度(F1 = 0.86; mIoU = 0.72)、YOLOv11m-segが最速スループット(画像当たり0.12秒)を達成した。
推定バイオボリュームは約4立方メートルから24立方メートルまで広がり、木々間の構造的な違いを反映している。
これらの結果は、バイオボリュームの精度が最重要である場合に、Mask R-CNNが好ましいことを示しているが、YOLOv11m-segは、速度が重要な大面積のデプロイメントに適している。
このフレームワークは正確でスケーラブルな果樹園のモニタリングを可能にし、DEMやDSMの統合とフィールドキャリブレーションにより、運用上の意思決定サポートをさらに強化することができる。
関連論文リスト
- Bringing SAM to new heights: Leveraging elevation data for tree crown segmentation from drone imagery [68.69685477556682]
現在のモニタリング手法には、大規模なコスト、時間、労力を必要とする地上計測が含まれる。
ドローンのリモートセンシングとコンピュータビジョンは、広範囲の航空画像から個々の木をマッピングする大きな可能性を秘めている。
高解像度ドローン画像におけるツリークラウンインスタンスの自動セグメンテーションのためのセグメンテーションモデル(SAM)を用いた手法の比較を行った。
また,デジタルサーフェスモデル(DSM)情報を用いたモデルへの標高データの統合についても検討した。
論文 参考訳(メタデータ) (2025-06-05T12:43:11Z) - Data Augmentation and Resolution Enhancement using GANs and Diffusion Models for Tree Segmentation [49.13393683126712]
都市森林は、環境の質を高め、都市における生物多様性を支援する上で重要な役割を担っている。
複雑な地形と異なる衛星センサーやUAV飛行高度による画像解像度の変化により、正確に木を検知することは困難である。
低解像度空中画像の品質を高めるため,GANと拡散モデルとドメイン適応を統合した新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2025-05-21T03:57:10Z) - Estimating the Diameter at Breast Height of Trees in a Forest With a Single 360 Camera [52.85399274741336]
森林在庫は、生態モニタリング、資源管理、炭素会計のために、乳房の高さ(DBH)の直径の正確な測定に頼っている。
LiDARベースの技術はセンチメートル単位の精度を達成できるが、コストは抑えられ、運用上複雑である。
コンシューマグレードの360度ビデオカメラしか必要としない低価格の代替機を提示する。
論文 参考訳(メタデータ) (2025-05-06T01:09:07Z) - Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery [68.69685477556682]
現在のモニタリング手法では、各種に対して手動で木を計測し、コスト、時間、労働力を必要とする。
ドローンリモートセンシングとコンピュータビジョンの進歩は、空中画像から木をマッピングし、特徴づける大きな可能性を秘めている。
若木植林の高分解能ドローン画像における樹冠の自動区分け作業におけるSAM法の比較を行った。
SAM out-of-box を用いたメソッドは、よく設計されたプロンプトであっても、カスタム Mask R-CNN よりも優れているわけではないが、SAM をチューニングするメソッドの可能性を秘めている。
論文 参考訳(メタデータ) (2025-03-26T03:45:36Z) - Unsupervised deep learning for semantic segmentation of multispectral LiDAR forest point clouds [1.6633665061166945]
本研究では,高密度レーザー走査点雲の葉木分離のための教師なし深層学習手法を提案する。
GrowSP-ForMS の平均精度は84.3%、mIoU平均交点は69.6%であった。
論文 参考訳(メタデータ) (2025-02-10T07:58:49Z) - Low-Cost Tree Crown Dieback Estimation Using Deep Learning-Based Segmentation [0.0]
深層学習と植生指標に基づくアプローチを用いて,LiDARなどの高価な機器を必要とせずに,RGB空中データからクラウンダイバックを評価する。
基礎となるMask R-CNNモデルのさらなる技術開発を必要とせず、高い全体セグメント化精度(mAP:0.519)を得る。
本研究は,森林ダイバックモニタリングの網羅性,速度,コストを改善するため,ディープラーニングの適用を含む自動データ収集および処理の可能性を示すものである。
論文 参考訳(メタデータ) (2024-09-12T16:03:56Z) - Estimating optical vegetation indices and biophysical variables for temperate forests with Sentinel-1 SAR data using machine learning techniques: A case study for Czechia [32.19783248549554]
森林生態系をモニタリングするための現在の光学的植生指標(VIs)は,様々な用途でよく確立され,広く利用されている。
対照的に、合成開口レーダ(SAR)のデータは、雲や昼夜の画像取得による信号の侵入により、完全な時系列(TS)を備えた洞察に富んだ、体系的な森林モニタリングを提供することができる。
本研究では、SARデータを用いて、機械学習(ML)による森林の光VIs推定の代替として光学衛星データの限界に対処することを目的とする。
一般に、SARベースのVIを高精度に推定し、年間240回測定し、空間分解能を20mまで向上することができる。
論文 参考訳(メタデータ) (2023-11-13T18:23:46Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
本稿では,複数の非国家の管轄区域で同時に作成される最初の高分解能天蓋の高さマップについて述べる。
地図は、2017年から2020年にかけて、マクサー画像に基づいて訓練された自己教師モデルから特徴を抽出することによって生成される。
また、GEDI観測に基づいて訓練された畳み込みネットワークを用いた後処理のステップも導入する。
論文 参考訳(メタデータ) (2023-04-14T15:52:57Z) - Hyperspectral and LiDAR data for the prediction via machine learning of
tree species, volume and biomass: a possible contribution for updating forest
management plans [0.3848364262836075]
本研究は,トレント自治州(PAT)の森林タイプと森林単位の脱線を識別する基盤を構築することを目的としている。
2014年のLiDARとPATによるハイパースペクトル調査のデータを取得し、処理した。
論文 参考訳(メタデータ) (2022-09-30T06:06:25Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
本研究では,10mの解像度で森林構造変数を高密度に推定するベイズ深層学習手法を提案する。
本手法は,Sentinel-2光画像とSentinel-1合成開口レーダ画像を5種類の森林構造変数のマップに変換する。
ノルウェーを横断する41の空中レーザー走査ミッションの基準データに基づいて、我々のモデルを訓練し、テストする。
論文 参考訳(メタデータ) (2021-11-25T16:21:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。