論文の概要: Online and Interactive Bayesian Inference Debugging
- arxiv url: http://arxiv.org/abs/2510.26579v1
- Date: Thu, 30 Oct 2025 15:05:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-31 16:05:09.873763
- Title: Online and Interactive Bayesian Inference Debugging
- Title(参考訳): オンラインおよび対話型ベイズ推論デバッグ
- Authors: Nathanael Nussbaumer, Markus Böck, Jürgen Cito,
- Abstract要約: 確率的プログラミングは、ベイズモデルのプログラムとしての定式化と後部推論の自動化を可能にする。
確率的プログラミングは、推論による問題の特定と修正には多くの時間と深い知識が必要です。
- 参考スコア(独自算出の注目度): 1.1677624591989955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic programming is a rapidly developing programming paradigm which enables the formulation of Bayesian models as programs and the automation of posterior inference. It facilitates the development of models and conducting Bayesian inference, which makes these techniques available to practitioners from multiple fields. Nevertheless, probabilistic programming is notoriously difficult as identifying and repairing issues with inference requires a lot of time and deep knowledge. Through this work, we introduce a novel approach to debugging Bayesian inference that reduces time and required knowledge significantly. We discuss several requirements a Bayesian inference debugging framework has to fulfill, and propose a new tool that meets these key requirements directly within the development environment. We evaluate our results in a study with 18 experienced participants and show that our approach to online and interactive debugging of Bayesian inference significantly reduces time and difficulty on inference debugging tasks.
- Abstract(参考訳): 確率的プログラミングは、ベイズモデルのプログラムとしての定式化と後続推論の自動化を可能にする、急速に発展するプログラミングパラダイムである。
モデルの開発とベイズ推論の実施を促進し、複数の分野の実践者がこれらのテクニックを利用できるようにしている。
それでも、確率的プログラミングは、推論による問題の特定と修正には多くの時間と深い知識が必要であるため、非常に難しい。
本研究を通じて,ベイズ推論をデバッグする新しい手法を導入し,時間と必要な知識を大幅に削減する。
ベイズ推論デバッグフレームワークが満たさなければならないいくつかの要件について議論し、開発環境内でこれらの重要な要件を満たす新しいツールを提案する。
その結果,ベイジアン推論のオンライン・インタラクティブデバッグへのアプローチは,推論デバッグタスクの時間と難易度を著しく低下させることが示された。
関連論文リスト
- Probing the Unknown: Exploring Student Interactions with Probeable Problems at Scale in Introductory Programming [4.1153199495993364]
本研究では、意図的な曖昧さや不完全な仕様を持つ自動段階的タスクであるProbeable Problems'の使用について検討する。
このような問題に対して、学生はテストのインプットを提出するか、あるいは「調査」し、実施前の要件を明らかにする必要がある。
コーディング前に期待される振る舞いを徹底的に探求するなど、体系的な戦略は、間違ったコードへの提出を減らし、コースの成功と相関する結果となった。
論文 参考訳(メタデータ) (2025-04-16T02:50:00Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AIエージェントは、あいまいで不明確なユーザー指示に基づいて、タスクを自動化するためにますますデプロイされている。
不安定な仮定をし、明確な質問をしないことは、最適以下の結果につながる可能性がある。
対話型コード生成設定において,LLMエージェントが不明瞭な命令を処理する能力について,プロプライエタリモデルとオープンウェイトモデルを評価して検討する。
論文 参考訳(メタデータ) (2025-02-18T17:12:26Z) - Inference-Time Computations for LLM Reasoning and Planning: A Benchmark and Insights [49.42133807824413]
本稿では,大規模言語モデル(LLM)の複雑な課題解決における推論と計画能力について検討する。
近年の推論時間技術の発展は,LLM推論を追加訓練なしで向上させる可能性を示している。
OpenAIのo1モデルは、マルチステップ推論と検証の新たな使用を通じて、有望なパフォーマンスを示している。
論文 参考訳(メタデータ) (2025-02-18T04:11:29Z) - Multi-Task Program Error Repair and Explanatory Diagnosis [28.711745671275477]
マルチタスクプログラムエラー修復・説明診断(mPRED)のための新しい機械学習手法を提案する。
ソースコードのエンコードには事前訓練された言語モデルが使用され、ダウンストリームモデルはエラーを特定して修復するために特別に設計されている。
プログラム構造を可視化・解析するために,プログラム構造の可視化にグラフニューラルネットワークを用いる。
論文 参考訳(メタデータ) (2024-10-09T05:09:24Z) - Bayesian Prompt Learning for Image-Language Model Generalization [64.50204877434878]
我々はベイズ法の正規化能力を用いて、変分推論問題としてプロンプト学習をフレーム化する。
提案手法は,プロンプト空間を正規化し,目に見えないプロンプトへの過剰適合を低減し,目に見えないプロンプトのプロンプト一般化を改善する。
ベイジアン・プロンプト学習がプロンプト空間の適切なカバレッジを提供する15のベンチマークを実証的に示す。
論文 参考訳(メタデータ) (2022-10-05T17:05:56Z) - Hybrid Predictive Coding: Inferring, Fast and Slow [62.997667081978825]
本稿では,反復型と償却型の両方を原則的に組み合わせたハイブリッド予測符号化ネットワークを提案する。
我々は,本モデルが本質的に不確実性に敏感であり,最小計算費用を用いて正確な信念を得るためにバランスを適応的にバランスさせることを実証した。
論文 参考訳(メタデータ) (2022-04-05T12:52:45Z) - Shepherd Pre-trained Language Models to Develop a Train of Thought: An
Iterative Prompting Approach [30.117038793151004]
プレトレーニング言語モデル(PLM)は、複雑で多段階の推論手順を必要とするタスクを解決するために知識をリコールすることができない。
人間がこれらのタスクのために「思考の訓練」を開発するのと同じように、どのようにしてPLMにそのような能力を持たせることができるのか?
本稿では,現在のステップのコンテキスト上で条件付きプロンプトを動的に合成することで,これらの制約に対処する反復型コンテキスト認識プロンプトを提案する。
論文 参考訳(メタデータ) (2022-03-16T04:12:20Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
大規模なオープンオンラインコース(MOOC)は、その柔軟性のおかげで、eラーニングの一般的な選択肢となっている。
多くの学習者とその多様な背景から、リアルタイムサポートの提供は課税されている。
MOOCインストラクターの大量の投稿と高い作業負荷により、インストラクターが介入を必要とするすべての学習者を識別できる可能性は低いです。
本稿では,モンテカルロドロップアウトと変分推論という2つの手法を用いて,学習者によるテキスト投稿のベイジアン深層学習を初めて検討する。
論文 参考訳(メタデータ) (2021-04-26T15:12:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。