論文の概要: FlowQ-Net: A Generative Framework for Automated Quantum Circuit Design
- arxiv url: http://arxiv.org/abs/2510.26688v1
- Date: Thu, 30 Oct 2025 16:57:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-31 16:05:09.911031
- Title: FlowQ-Net: A Generative Framework for Automated Quantum Circuit Design
- Title(参考訳): FlowQ-Net: 量子回路の自動設計のための生成フレームワーク
- Authors: Jun Dai, Michael Rizvi-Martel, Guillaume Rabusseau,
- Abstract要約: 自動量子回路合成のための生成フレームワークであるtextscFlowQ-Net(Flow-based Quantum Design Network)を紹介する。
このフレームワークは、回路を順次構築するポリシーを学習し、それらをフレキシブルなユーザ定義報酬関数にサンプリングする。
シミュレーションにより,textscFlowQ-Netの有効性を実証する。
- 参考スコア(独自算出の注目度): 8.70817825961863
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing efficient quantum circuits is a central bottleneck to exploring the potential of quantum computing, particularly for noisy intermediate-scale quantum (NISQ) devices, where circuit efficiency and resilience to errors are paramount. The search space of gate sequences grows combinatorially, and handcrafted templates often waste scarce qubit and depth budgets. We introduce \textsc{FlowQ-Net} (Flow-based Quantum design Network), a generative framework for automated quantum circuit synthesis based on Generative Flow Networks (GFlowNets). This framework learns a stochastic policy to construct circuits sequentially, sampling them in proportion to a flexible, user-defined reward function that can encode multiple design objectives such as performance, depth, and gate count. This approach uniquely enables the generation of a diverse ensemble of high-quality circuits, moving beyond single-solution optimization. We demonstrate the efficacy of \textsc{FlowQ-Net} through an extensive set of simulations. We apply our method to Variational Quantum Algorithm (VQA) ansatz design for molecular ground state estimation, Max-Cut, and image classification, key challenges in near-term quantum computing. Circuits designed by \textsc{FlowQ-Net} achieve significant improvements, yielding circuits that are 10$\times$-30$\times$ more compact in terms of parameters, gates, and depth compared to commonly used unitary baselines, without compromising accuracy. This trend holds even when subjected to error profiles from real-world quantum devices. Our results underline the potential of generative models as a general-purpose methodology for automated quantum circuit design, offering a promising path towards more efficient quantum algorithms and accelerating scientific discovery in the quantum domain.
- Abstract(参考訳): 効率的な量子回路を設計することは、特にノイズの多い中間スケール量子(NISQ)デバイスにおいて、量子コンピューティングの可能性を探る上で重要なボトルネックである。
ゲートシーケンスの探索空間は組合せ的に成長し、手作りのテンプレートは少ないキュービットと深さの予算を浪費することが多い。
本稿では、生成フローネットワーク(GFlowNets)に基づく自動量子回路合成のための生成フレームワークである「textsc{FlowQ-Net} (Flow-based Quantum Design Network)」を紹介する。
本フレームワークは,回路を逐次的に構築する確率的ポリシを学習し,複数の設計目標(性能,深さ,ゲート数など)を符号化可能な,フレキシブルでユーザ定義の報酬関数に比例してサンプリングする。
このアプローチは、単一ソリューション最適化を超えて、さまざまな高品質な回路のアンサンブルを生成することができる。
広範囲なシミュレーションを通して, textsc{FlowQ-Net} の有効性を実証する。
本稿では, 分子基底状態推定, Max-Cut, 画像分類のための変分量子アルゴリズム (VQA) アンサッツ設計に適用する。
textsc{FlowQ-Net} によって設計された回路は、パラメータ、ゲート、深さの点で 10$\times$-30$\times$よりコンパクトな回路を、精度を損なうことなく、大幅に改善する。
この傾向は、現実世界の量子デバイスからエラープロファイルを受ける場合でも維持される。
本研究は, 量子回路設計の汎用手法として生成モデルの可能性を明らかにし, より効率的な量子アルゴリズムの実現と量子領域での科学的発見の促進に寄与する。
関連論文リスト
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
変分量子回路(VQC)は、量子機械学習のための新しい経路を提供する。
それらの実用的応用は、制約付き線形表現性、最適化課題、量子ハードウェアノイズに対する鋭敏感といった固有の制限によって妨げられている。
この研究は、これらの障害を克服するために設計されたスケーラブルで堅牢なハイブリッド量子古典アーキテクチャであるVQC-MLPNetを導入している。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Differentiable Quantum Architecture Search in Quantum-Enhanced Neural Network Parameter Generation [4.358861563008207]
量子ニューラルネットワーク(QNN)は、経験的にも理論的にも有望であることを示している。
ハードウェアの欠陥と量子デバイスへの限られたアクセスは、実用的な課題となる。
微分可能最適化を用いた自動解法を提案する。
論文 参考訳(メタデータ) (2025-05-13T19:01:08Z) - Q-Fusion: Diffusing Quantum Circuits [2.348041867134616]
本稿では、新しい量子回路を生成するためにLayerDAGフレームワークを利用する拡散型アルゴリズムを提案する。
本結果は,提案モデルが100%有効な量子回路出力を連続的に生成することを示す。
論文 参考訳(メタデータ) (2025-04-29T14:10:10Z) - RH: An Architecture for Redesigning Quantum Circuits on Quantum Hardware Devices [6.959884576408311]
本稿では,量子ハードウェア上での大規模量子回路の再設計を実現するアーキテクチャを提案する。
ランダムな量子回路モジュールを標準のEQ-GANフレームワークにプリプションすることで、量子状態学習からユニタリ変換学習までその能力を拡張する。
論文 参考訳(メタデータ) (2024-12-30T12:05:09Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum Deep Dreaming: A Novel Approach for Quantum Circuit Design [0.0]
量子ディープドリーミング(Quantum Deep Dreaming, QDD)は、特定の目的のために最適な量子回路アーキテクチャを生成するアルゴリズムである。
我々は、QDDが基底状態エネルギーに近い6量子ビットの回路、すなわち「ドレーム」を正常に生成することを示した。
論文 参考訳(メタデータ) (2022-11-05T22:16:10Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - Differentiable Quantum Architecture Search [15.045985536395479]
微分可能量子アーキテクチャ探索(DQAS)の一般的なフレームワークを提案する。
DQASは、エンドツーエンドの微分可能な方法で量子回路の自動設計を可能にする。
論文 参考訳(メタデータ) (2020-10-16T18:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。